Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 71, 2024 - Issue 2
168
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shoshonitic pluton and an associated base-metal deposit in the Tarom–Hashtjin metallogenic zone, NW Iran: implication for tectono-magmatic evolution and metallogenic considerations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 251-276 | Received 27 Apr 2023, Accepted 16 Oct 2023, Published online: 04 Dec 2023

References

  • Aghazadeh, M., Castro, A., Badrzadeh, Z., & Vogt, K. (2011). Post-collisional polycyclic plutonism from the Zagros hinterland: The Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148(5-6), 980–1008. https://doi.org/10.1017/S0016756811000380
  • Albinson, T., Norman, D. J., Cole, D., & Chomiak, B., (2001). Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. In T. Albinson & C. E. Nelson (Eds.), New mines and discoveries in Mexico and Central America (p. 132). Economic Geology Special Publication, 8. https://doi.org/10.5382/SP.08.01
  • Amini, F. (2018). Petrography and geochemistry of Chomalou Pb–Zn deposit and its host rocks, north of Zanjan [Unpublished MSc thesis]. Department of Geology, University of Zanjan (In Persian with English abstract).
  • Asiabanha, A., & Foden, J. (2012). Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos, 148, 98–111. https://doi.org/10.1016/j.lithos.2012.05.014
  • Azizi, H., Mehrabi, B., & Akbarpour, A. (2009). Genesis of Tertiary magnetite–apatite deposits, southeast of Zanjan, Iran. Resource Geology, 59(4), 330–341. https://doi.org/10.1111/j.1751-3928.2009.00101.x
  • Beermann, O., Holtz, F., & Duesterhoeft, E. (2017). Magma storage conditions and differentiation of the mafic Lower Pollara Volcanics, Salina Island, Aeolian Islands, Italy: Implications for the formation conditions of shoshonites and potassic rocks. Contributions to Mineralogy and Petrology, 172(5), 1–21. https://doi.org/10.1007/s00410-017-1363-z
  • Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R., & Massonne, H. J. (2011). Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience, 4(9), 641–646. https://doi.org/10.1038/ngeo1214
  • Blatter, D. L., Sisson, T. W., & Hankins, W. B. (2023). Garnet stability in arc basalt, andesite, and dacite – An experimental study. Contributions to Mineralogy and Petrology, 178(6), 33. https://doi.org/10.1007/s00410-023-02008-w
  • Blichert-Toft, J., & Albarede, F. (1997). The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2), 243–258. https://doi.org/10.1016/S0012-821X(97)00040-X
  • Bodnar, R. (1993). Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57(3), 683–684. https://doi.org/10.1016/0016-7037(93)90378-A
  • Bodnar, R. J., Reynolds, T. J., & Kuehn, C. A. (1985). Fluid-inclusion systematics in epithermal systems. In B. R. Berger & P. M. Bethke (Eds.), Geology and geochemistry of epithermal systems. Society of Economic Geologists, Reviews in Economic Geology (Vol. 2, pp. 73–98). https://doi.org/10.5382/Rev.02.05
  • Bonin, B. (2004). Do coeval mafic and felsic magmas in post-collisional to within plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.042
  • Bortnikov, N. S., Dobrovol’skaya, M. G., Genkin, A. D., Naumov, V. B., & Shapenko, V. V. (1995). Sphalerite–galena geothermometers: Distribution of cadmium, manganese, and the fractionation of sulfur isotopes. Economic Geology, 90(1), 155–180. https://doi.org/10.2113/gsecongeo.90.1.155
  • Bouzari, F., & Clark, A. H. (2006). Prograde evolution and geothermal affinities of a major porphyry copper deposit: The Cerro Colorado Hypogene Protore, I Region, northern Chile. Economic Geology, 101(1), 95–134. https://doi.org/10.2113/gsecongeo.101.1.95
  • Burnham, C. W. (1979). Magmas and hydrothermal fluids. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (2nd ed., pp. 71–136). John Wiley and Sons Inc.
  • Cameron, B. I., Walker, J. A., Carr, M. J., Patino, L. C., Matías, O., & Feigenson, M. D. (2003). Flux versus decompression melting at stratovolcanos in southeastern Guatemala. Journal of Volcanology and Geothermal Research, 119(1-4), 21–50. https://doi.org/10.1016/S0377-0273(02)00304-9
  • Carman, G. (2005). Geology, mineralization, and hydrothermal evolution of the Ladolam gold deposit, Lihir Island, Papua New Guinea. Society of Economic Geologists, Special Publication, 10, 247–284. https://doi.org/10.5382/SP.10.14
  • Castro, A., Aghazadeh, M., Badrzadeh, Z., & Chichorro, M. (2013). Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos, 180-181, 109–127. https://doi.org/10.1016/j.lithos.2013.08.003
  • Chi, G., Haid, T., Quirt, D., Fayek, M., Blamey, N. J. F., & Chu, H. (2017). Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Mineralium Deposita, 52(2), 211–232. https://doi.org/10.1007/s00126-016-0657-9
  • Christie, A. B., Simpson, M. P., Brathwaite, R. L., Mauk, J. L., & Simmons, S. F. (2007). Epithermal Au–Ag and related deposits of the Hauraki goldfield, Coromandel volcanic zone, New Zealand. Economic Geology, 102(5), 785–816. https://doi.org/10.2113/gsecongeo.102.5.785
  • Cooke, D. R., & McPhail, D. (2001). Epithermal Au–Ag–Te mineralization, Acupan, Baguio district, Philippines: Numerical simulations of mineral deposition. Economic Geology, 96(1), 109–131. https://doi.org/10.2113/gsecongeo.96.1.109
  • Cooke, D. R., & Simmons, S. F. (2000). Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology, 13, 221–244. https://doi.org/10.5382/Rev.13.06
  • Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302(5905), 236–238. https://doi.org/10.1038/302236a0
  • Dilles, J. H., & John, D. A. (2021). Porphyry and epithermal mineral deposits. In D. Alderton & S. A. Elias (Eds.), Encyclopedia of geology (2nd ed., pp. 847–866). Elsevier. https://doi.org/10.1016/B978-0-08-102908-4.00005-9
  • Einaudi, M. T., Hedenquist, J. W., & Inan, E. E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Society of Economic Geologists, Special Publication, 10, 285–314.
  • Elburg, M. A., Bergen, M. V., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnain, I., & Nasution, A. (2002). Geochemical trends across an arc-continent collision zone: Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta, 66(15), 2771–2789. https://doi.org/10.1016/S0016-7037(02)00868-2
  • Esmaeli, M., Lotfi, M., & Nezafati, N. (2015). Fluid inclusion and stable isotope study of the Khalyfehlou copper deposit, southeast Zanjan, Iran. Arabian Journal of Geosciences, 8(11), 9625–9633. https://doi.org/10.1007/s12517-015-1907-3
  • Faridi, M., & Anvari, A. (2000). Geological map of Hashtjin, scale 1:100,000. Geological Survey of Iran.
  • Field, C. W., & Fifarek, R. H. (1985). Light stable isotope systematics in the epithermal environment. Reviews in Economic Geology, 2, 99–128. https://doi.org/10.5382/Rev.02.06
  • Foley, S., & Peccerillo, A. (1992). Potassic and ultrapotassic magmas and their origin. Lithos, 28(3-6), 181–185. https://doi.org/10.1016/0024-4937(92)90005-J
  • Furman, T., & Graham, D. (1999). Erosion of lithospheric mantle beneath the East African rift system: Geochemical evidence from the Kivu volcanic province. Lithos, 48(1-4), 237–262. https://doi.org/10.1016/S0419-0254(99)80014-7
  • Ghasemi Siani, M., Mehrabi, B., Azizi, H., Wilkinson, C. M., & Ganerod, M. (2015). Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran. Open Geosciences, 7(1), 207–222. https://doi.org/10.1515/geo-2015-0024
  • Ghasemi Siani, M., Mehrabi, B., Nazarian, M., Lotfi, M., & Corfu, F. (2022). Geology and genesis of the Chomalou polymetallic deposit, NW Iran. Ore Geology Reviews, 143, 104763. https://doi.org/10.1016/j.oregeorev.2022.104763
  • Ghorbani, M. (2013). The economic geology of Iran: Mineral deposits and natural resources (p. 569). Springer.
  • Glaser, L., Grosche, A., Voudouris, C. P., & Haase, K. M. (2022). The high-K calc-alkaline to shoshonitic volcanism of Limnos, Greece: Implications for the geodynamic evolution of the northern Aegean. Contributions to Mineralogy and Petrology, 177(8), 1–20. https://doi.org/10.1007/s00410-022-01940-7
  • Griffin, W. L., Pearson, N. J., Belousova, E. A., & Saeed, A. (2006). Comment: Hf-isotope heterogeneity in zircon 91500. Chemical Geology, 233(3-4), 358–363. https://doi.org/10.1016/j.chemgeo.2006.03.007
  • Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O’Reilly, S. Y., Xu, X., & Zhou, X. (2002). Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4), 237–269. https://doi.org/10.1016/S0024-4937(02)00082-8
  • Haas, J. L. (1971). The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geology, 66(6), 940–946. https://doi.org/10.2113/gsecongeo.66.6.940
  • Heald, P., Foley, N. K., & Hayba, D. O. (1987). Comparative anatomy of volcanic-hosted epithermal deposits; acid-sulfate and adularia-sericite types. Economic Geology, 82(1), 1–26. https://doi.org/10.2113/gsecongeo.82.1.1
  • Hedenquist, J. W., Arribas, A., & Reynolds, T. J. (1998). Evolution of an intrusion-centered hydrothermal system: Far southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Economic Geology, 93(4), 373–404. https://doi.org/10.2113/gsecongeo.93.4.373
  • Hedenquist, J. W., Arribas, A. R., & Gonzalez-Urien, E. (2000). Exploration for epithermal gold deposits. In S. G. Hagemann & P. E. Brown (Eds.), Gold in 2000 (pp. 245–277). Society of Economic Geologists.
  • Hedenquist, J. W., & Lowenstern, J. B. (1994). The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490), 519–527. https://doi.org/10.1038/370519a0
  • Hirayama, K., Samimi, M., Zahedi, M., & Hushmand-Zadeh, A. (1966). Geology of the Tarom district, western part (Zanjan area, north-west Iran) (p. 31). Geological Survey and Mineral Exploration of Iran, Report, No. 8.
  • Hoefs, J. (2015). Stable isotope geochemistry (7th ed., p. 404). Springer International Publishing.
  • Hofmann, A. W. (1997). Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613), 219–229. https://doi.org/10.1038/385219a0
  • Honarmand, M., Van der Boon, A., Neubauer, F., Heberer, B., Li, Q., Kuiper, K. F., Mason, P. R. D., & Krijgsman, W. (2023). Geodynamic significance of extensive potassium-rich magmatism along the Alborz structural zone, northern Iran: Implications for Cenozoic tectonic evolution of the Neotethys subduction. Submitted manuscript.
  • Hou, Z. Q., & Wang, E. Q. (2008). Metallogenesis of the Indo-Asian collisional orogen: New advances. Acta Geoscientica Sinica, 29(3), 275–292. (In Chinese with English abstract).
  • Irannezhadi, M. R., Ghorbani, M. R., Vossoughi, M., & Pourmoafi, M. (2007). Tertiary arc related volcanism in Central Alborz Mountains. European Geosciences Union (EGU) General Assembly, Austria, Geophysical Research Abstracts, 9, 00867.
  • Jiang, Y. H., Jiang, S. Y., Ling, H. F., Zhou, X. R., Rui, X. J., & Yang, W. Z. (2002). Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid genesis. Lithos, 63(3-4), 165–187. https://doi.org/10.1016/S0024-4937(02)00140-8
  • John, D. A. (2001). Miocene and Early Pliocene epithermal gold–silver deposits in the northern Great Basin, western USA: Characteristics, distribution and relationship to magmatism. Economic Geology, 96(8), 1827–1853. https://doi.org/10.2113/gsecongeo.96.8.1827
  • Karsli, O., Doku, A., Uysal, I., Ketenci, M., Chen, B., & Kandemir, R. (2012). Deciphering the shoshonitic monzonites with I-type characteristic, the SisdağI pluton, NE Turkey: Magmatic response to continental lithospheric thinning. Journal of Asian Earth Sciences, 51, 45–62. https://doi.org/10.1016/j.jseaes.2012.02.003
  • Khalimov, G., Yang, H., Sang, M., Xiao, W., Mamadjanov, Y., Aminov, J., Yogibekov, D., & Liu, X. (2022). Late Paleozoic shoshonitic magmatism in the southwestern Middle Tianshan (Tajikistan) of the Southwestern Altaids: Implications for slab roll-back with extensional arc-related basins after flat subduction. Frontiers in Earth Science, 10, 893751. https://doi.org/10.3389/feart.2022.893751
  • Khodaei, M. (2010). Petrology of plutonic rock in the Chomalou area (south of Hashtjin [Unpublished MSc thesis]. Department of Geology, University of Zanjan (in Persian with English abstract).
  • Kouhestani, H., Mokhtari, M. A. A., & Chang, Z. (2022). Fluid inclusion and stable isotope constraints on the genesis of epithermal base-metal veins in the Armaqan Khaneh mining district, Tarom–Hashtjin metallogenic belt, NW Iran. Australian Journal of Earth Sciences, 69(6), 844–860. https://doi.org/10.1080/08120099.2022.2033320
  • Kouhestani, H., Mokhtari, M. A. A., Chang, Z., & Johnson, C. A. (2018). Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 93, 1–18. https://doi.org/10.1016/j.oregeorev.2017.12.012
  • Kouhestani, H., Mokhtari, M. A. A., Qin, K. Z., & Zhang, X. N. (2020). Genesis of the Abbasabad epithermal base metal deposit, NW Iran: Evidences from ore geology, fluid inclusion and O–S isotopes. Ore Geology Reviews, 126, 103752. https://doi.org/10.1016/j.oregeorev.2020.103752
  • Kouhestani, H., Mokhtari, M. A. A., Qin, K. Z., & Zhao, J. X. (2019a). Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 109, 564–584. https://doi.org/10.1016/j.oregeorev.2019.05.014
  • Kouhestani, H., Mokhtari, M. A. A., Qin, K. Z., & Zhao, J. X. (2019b). Origin and evolution of hydrothermal fluids in the Marshoun epithermal Pb–Zn–Cu (Ag) deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 113, 103087. https://doi.org/10.1016/j.oregeorev.2019.103087
  • Lattanzi, P. (1991). Applications of fluid inclusions in the study and exploration of mineral deposits. European Journal of Mineralogy, 3(4), 689–702. https://doi.org/10.1127/ejm/3/4/0689
  • Li, S. N., Ni, P., Bao, T., Li, C. Z., Xiang, H. L., Wang, G. G., Huang, B., Chi, Z., Dai, B. Z., & Ding, J. Y. (2018a). Geology, fluid inclusion and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, southeast China: Implications for ore genesis and mineral exploration. Journal of Geochemical Exploration, 195, 16–30. https://doi.org/10.1016/j.gexplo.2018.02.009
  • Li, S. N., Ni, P., Bao, T., Xiang, H. L., Chi, Z., Wang, G. G., Huang, B., Ding, J. Y., & Dai, B. Z. (2018b). Genesis of the Ancun epithermal gold deposit, southeast China: Evidence from fluid inclusion and stable isotope data. Journal of Geochemical Exploration, 195, 157–177. https://doi.org/10.1016/j.gexplo.2018.01.016
  • Li, X. H., Li, W. X., Wang, X. C., Li, Q. L., Liu, Y., & Tang, G. Q. (2009). Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf–O isotopic constraints. Science in China Series D: Earth Sciences, 52(9), 1262–1278. https://doi.org/10.1007/s11430-009-0117-9
  • Li, X. H., Tang, G. Q., Gong, B., Yang, Y. H., Hou, K. J., Hu, Z. C., Li, Q. L., Liu, Y., & Li, W. X. (2013). Qinghu zircon: A working reference for microbeam analysis of U–Pb age and Hf and O isotopes. Chinese Science Bulletin, 58(36), 4647–4654. https://doi.org/10.1007/s11434-013-5932-x
  • Li, X. H., Zhou, H. W., Liu, Y., Le, C. Y., Sun, M., & Chen, Z. H. (2000). Shoshonitic intrusive suite in SE Guangxi: Petrology and geochemistry. Chinese Science Bulletin, 45(7), 653–659. https://doi.org/10.1007/BF02886045
  • Li, Y. B., & Liu, J. M. (2006). Calculation of sulfur isotope fractionation in sulfides. Geochimica et Cosmochimica Acta, 70(7), 1789–1795. https://doi.org/10.1016/j.gca.2005.12.015
  • Lindgren, W. (1933). Mineral deposits (4th ed., p. 930). McGraw-Hill.
  • López-Moro, F. J., & López-Plaza, M. (2004). Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): Petrogenetic evolution from monzogabbro to granite magmas. Lithos, 72(1-2), 19–44. https://doi.org/10.1016/j.lithos.2003.08.002
  • Lu, Y. J., Kerrich, R., McCuaig, T. C., Li, Z. X., Hart, C. J. R., Cawood, P. A., Hou, Z-Q., Bagas, L., Cliff, J., Belousova, E. A., & Tang, S. H. (2013). Geochemical, Sr–Nd–Pb, and zircon Hf–O isotopic compositions of Pliocene–Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: Petrogenesis and tectonic implications. Journal of Petrology, 54(7), 1309–1348. https://doi.org/10.1093/petrology/egt013
  • Ludwig, K. R. (2003). User’s mannual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. 4 (p. 74). Special Publication/Berkeley Geochronology Center.
  • Manske, S. L., Hedenquist, J. W., O’Connor, G., Tǎmaş, C., Cauuet, B., Leary, S., & Minut, A. (2006). RoşiaMontană, Romania: Europe’s largest gold deposit. SEG Discovery, 64(64), 1–15. https://doi.org/10.5382/SEGnews.2006-64.fea
  • Marschall, H. R., & Schumacher, J. C. (2012). Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5(12), 862–867. https://doi.org/10.1038/ngeo1634
  • McDonough, W. F., & Sun, S. S. (1995). Composition of the Earth. Chemical Geology, 120(3-4), 223–253.https://doi.org/10.1016/0009-2541(94)00140-4
  • Méheut, M., Lazzeri, M., Balan, E., & Mauri, F. (2007). Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochimica et Cosmochimica Acta, 71(13), 3170–3181. https://doi.org/10.1016/j.gca.2007.04.012
  • Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M., & Marsh, E. E. (2016). Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geology Reviews, 78, 41–57. https://doi.org/10.1016/j.oregeorev.2016.03.016
  • Middlemost, E. A. K. (1985). Magmas and magmatic rocks (p. 266). Longman.
  • Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
  • Mikaeili, K., Hosseinzadeh, M. R., Moayyed, M., & Maghfouri, S. (2018). The Shah-AliBeiglou Zn–Pb–Cu (Ag) deposit, Iran: An example of intermediate-sulfidation epithermal type mineralization. Minerals, 8(4), 148. https://doi.org/10.3390/min8040148
  • Moghadam, H. S., Griffin, W. L., Kirchenbaur, M., Garbe-Schonberg, D., Zakie Khedr, M., Kimura, J. I., Stern, R. J., Ghorbani, G., Murphy, R., O’Reilly, S. Y., Arai, S., & Maghdour-Mashhour, R. (2018). Roll-back, extension and mantle upwelling triggered Eocene potassic magmatism in NW Iran. Journal of Petrology, 59(7), 1417–1465.https://doi.org/10.1093/petrology/egy067
  • Mokhtari, A. A., Kouhestani, H., & Qin, K. Z. (2022). Zircon U–Pb age, whole-rock geochemistry and Nd–Sr–Pb isotope constraints on petrogenesis of the Eocene Zajkan gabbro–monzogranite intrusion, Tarom–Hashtjin magmatic belt, NW Iran. Australian Journal of Earth Sciences, 69(7), 1030–1047. https://doi.org/10.1127/njma/2019/0158
  • Mousavi Motlagh, S. H., & Ghaderi, M. (2019). The Chargar Au–Cu deposit: An example of low-sulfidation epithermal mineralization from the Tarom subzone, NW Iran. Neues Jahrbuch Für Mineral–gie – Abhandlungen, 196(1), 43–66. https://doi.org/10.1127/njma/2019/0158
  • Müller, D., & Groves, D. I. (1995). Potassic igneous rocks and associated gold–copper mineralization. Lecture notes in earth sciences series (Springer-Verlag, pp. xiii–+210). https://doi.org/10.1007/978-3-662-00920-8
  • Müller, D., & Groves, D. I. (2000). Potassic igneous rocks and associated gold–copper mineralization (3rd ed., p. 252). Springer.
  • Nabatian, G., Ghaderi, M., & Honarmand, M. (2016). Petrography and mineral chemistry of Tarom plutonic complex, NE Zanjan. Petrological Journal, 26, 99–116. (In Persian with English abstract).
  • Nabatian, G., Ghaderi, M., Neubauer, F., Honarmand, M., Liu, X. M., Dong, Y. P., Jiang, S. Y., von Quadt, A., & Bernroider, M. (2014). Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos, 184-187, 324–345. https://doi.org/10.1016/j.lithos.2013.11.002
  • Nabatian, G., Jiang, S. Y., Honarmand, M., & Neubauer, F. (2016). Zircon U–Pb ages, geochemical and Sr–Nd–Pb–Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos, 244, 43–58. https://doi.org/10.1016/j.lithos.2015.11.020
  • Nabatian, G., Wan, B., & Honarmand, M. (2017). Whole rock geochemistry, molybdenite Re–Os geochronology, stable isotope and fluid inclusion investigations of the Siah-Kamar deposit, western Alborz–Azarbayjan: New constrains on the porphyry Mo deposit in Iran. Ore Geology Reviews, 91, 638–659. https://doi.org/10.1016/j.oregeorev.2017.08.030
  • Naden, J., Kilias, S. P., & Darbyshire, D. P F. (2005). Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: The example of Milos Island, Greece. Geology, 33(7), 541–544. https://doi.org/10.1130/G21307.1
  • Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J. M., Corfu, F., Dörr, W., Kamo, S. L., Kennedy, A. K., Kronz, A., Reiners, P. W., Frei, D., Kosler, J., Wan, Y., Götze, J., Häger, T., Kröner, A., & Valley, J. W. (2008). Zircon M257 – A homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3), 247–265. https://doi.org/10.1111/j.1751-908X.2008.00914.x
  • Nazarian, M., Lotfi, M., Gourabjeri, A., & Ghasemi Siani, M. (2021). Petrography, geochemistry and tectonic setting of volcanic rocks in Chomalu polymetallic deposit (North-West of Zanjan). Scientific Quarterly Journal, Geosciences, 31(121), 61–72. (In Persian with English abstract).
  • Ohmoto, H., & Rye, R. O. (1979). Isotopes of sulphur and carbon. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (2nd ed., pp. 509–567). John Wiley and Sons, Inc.
  • Oyman, T. (2019). Epithermal deposits of Turkey. In F. Pirajno, T. Ünlü, C. Dönmez, & M. Şahin (Eds.), Mineral resources of Turkey. (Gewerbestrasse, Switzerland: Modern Approaches in Solid Earth Sciences). (Vol. 16, pp. 159–223). Springer. https://doi.org/10.1007/978-3-030-02950-0_4
  • Padilha, D. F., Bitencourt, M. d. F., Nardi, L. V. S., Florisbal, L. M., Reis, C., Geraldes, M., & Almeida, B. S. (2019). Sources and settings of Ediacaran post-collisional syenite-monzonite-diorite shoshonitic magmatism from southernmost Brazil. Lithos, 344-345, 482–503. https://doi.org/10.1016/j.lithos.2019.06.004
  • Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Lin, Y. C., Lee, H. Y., Ching-Hua Lo, C. H., & Khatib, M. M. (2013). Iranian ultrapotassic volcanism at ∼11 Ma signifies the initiation of post-collisional magmatism in the Arabia–Eurasia collision zone. Terra Nova, 25(5), 405–413. https://doi.org/10.1111/ter.12050
  • Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & N. J. Norry (Eds.), Continental Basalts and mantle xenoliths (pp. 230–249). Shiva.
  • Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/BF00384745
  • Pe-Piper, G., Piper, D. J. W., Koukouvelas, I., Dolansky, L. M., & Kokkalas, S. (2009). Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geological Society of America Bulletin, 121(1–2), 39–54. https://doi.org/10.1130/B26317.1
  • Perrin, A., Goes, S., Prytulak, J., Rondenay, S., & Davies, D. R. (2018). Mantle wedge temperatures and their potential relation to volcanic arc location. Earth and Planetary Science Letters, 501, 67–77. https://doi.org/10.1016/j.epsl.2018.08.011
  • Rabiei-Sadeghabadi, A., Arab-Amiri, A., Kamkar-Rouhani, A., & Ebrahimi, S. (2019). Geological and geophysical studies for exploration of lead and zinc in Chumalu area, northwest of Zanjan. Journal of Research on Applied Geophysics, 5(2), 217–234. https://magiran.com/p2029541
  • Rapp, R. P., & Watson, E. B. (1995). Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust–mantle recycling. Journal of Petrology, 36(4), 891–931. https://doi.org/10.1093/petrology/36.4.891
  • Richards, J. P. (2015). Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70, 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009
  • Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 644. https://doi.org/10.1515/9781501508271
  • Roedder, E., & Bodnar, R. J. (1997). Fluid inclusion studies of hydrothermal ore deposits. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 657–697). John Wiley & Sons.
  • Roedder, E., & Bodnar, R. J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8(1), 263–301. https://doi.org/10.1146/annurev.ea.08.050180.001403
  • Rye, R. O. (1993). Evolution of magmatic fluids in the epithermal environment: The stable isotope perspective. Economic Geology, 88(3), 733–752. https://doi.org/10.2113/gsecongeo.88.3.733
  • Schaarschmidt, A., Klemd, R., Regelous, M., Voudouris, P. C., Melfos, V., & Haase, K. M. (2021). The formation of shoshonitic magma and its relationship to porphyry-type mineralisation: The Maronia Pluton in NE Greece. Lithos, 380-381, 105911. https://doi.org/10.1016/j.lithos.2020.105911
  • Sillitoe, R. (1997). Epithermal models: Genetic types, geometrical controls and shallow features. In R. Sillitoe (Ed.), Mineral deposit modeling (pp. 403–417). Geological Association of Canada, Special Paper 40.
  • Sillitoe, R. H., & Hedenquist, J. W. (2003). Linkages between volcano-tectonic settings, ore fluid compositions, and epithermal precious metal deposits. In S. F. Simmons & I. Graham (Eds.), Volcanic, geothermal, and ore-forming fluids: Rulers and witnesses of processes within the earth (pp. 315–343). Society of Economic Geologists, Special Publication.
  • Simmons, S. F. (1995). Magmatic contributions to low-sulfidation epithermal deposits. In J. F. Thompson (Ed.), Magmatic, fluids, and ore deposits (pp. 455–477). Mineralogical Association of Canada Short Course Series 23.
  • Simmons, S. F., & Brown, K. L. (2006). Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science, 314(5797), 288–291. https://doi.org/10.1126/science.1132866
  • Simmons, S. F., & Browne, P. R. (2000). Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Economic Geology, 95(5), 971–999. https://doi.org/10.2113/95.5.971
  • Simmons, S. F., White, N. C., & John, D. A. (2005). Geological characteristics of epithermal precious and base metal deposits. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, & J. P. Richards (Eds.), Economic geology (Economic geology 100th anniversary volume) (pp. 485–522). https://doi.org/10.5382/AV100.16
  • Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
  • Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4), 311–324. https://doi.org/10.1016/S0012-821X(04)00012-3
  • Sterner, S. M., Hall, D. L., & Bodnar, R. J. (1988). Synthetic fluid inclusions: V. Solubility relations in the system NaCl–KCl–H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta, 52(5), 989–1005. https://doi.org/10.1016/0016-7037(88)90254-2
  • Sun, G., Zeng, Q., Zhou, J. X., Zhou, L. F., & Chen, P. (2021). Genesis of the Xinling vein-type Ag–Pb–Zn deposit, Liaodong Peninsula, China: Evidence from texture, composition and in situ S–Pb isotopes. Ore Geology Reviews, 133, 104120. https://doi.org/10.1016/j.oregeorev.2021.104120
  • Tahmoursi, H. (2009). Petrological investigation of igneous intrusive rocks Northwest Haj Seyran (SE Hashtjin) [Unpublished MSc thesis]. Geology Department, Faculty of Natural Sciences Tabriz University (in Persian with English abstract).
  • Tang, G-Q., Liu, Y., Li, Q-L., Feng, L-J., Wei, G-J., Su, W., Li, Y., Ren, G-H., & Li, X-H. (2020). New natural and fused quartz reference materials for oxygen isotope microanalysis. Atomic Spectroscopy, 41(5), 188–193. https://doi.org/10.46770/AS.2020.05.002
  • Taylor, H. P. J. (1997). Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (3rd ed., pp. 229–302). John Wiley and Sons Inc.
  • Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P., & Deng, W. (1996). Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of Ocean Island Basalts. Journal of Petrology, 37(1), 45–71. https://doi.org/10.1093/petrology/37.1.45
  • Verdel, C., Wernicke, B. P., Hassanzadeh, J., & Guest, B. (2011). A Paleogene extensional arc flare-up in Iran. Tectonics, 30(3), TC3008. https://doi.org/10.1029/2010TC002809
  • Wang, L., Qin, K. Z., Song, G. X., & Li, G. M. (2019). A review of intermediate sulfidation epithermal deposits and sub-classification. Ore Geology Reviews, 107, 434–456. https://doi.org/10.1016/j.oregeorev.2019.02.023
  • Wang, L., Qin, K., Song, G., Pang, X., Li, G., & Zou, X. (2020). Geology and genesis of the Early Paleozoic Zhengguang intermediate-sulfidation epithermal Au–Zn deposit, northeast China. Ore Geology Reviews, 124, 103602. https://doi.org/10.1016/j.oregeorev.2020.103602
  • Wang, Q., Wyman, D. A., Xu, J-F., Zhao, Z-H., Jian, P., Xiong, X-L., Bao, Z-W., Li, C-F., & Bai, Z-H. (2006). Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization. Lithos, 89(3-4), 424–446. https://doi.org/10.1016/j.lithos.2005.12.010
  • Wang, Y., Sasaki, M., Sasada, M., & Chen, C. H. (1999). Fluid inclusion studies of the Chinkuashih high-sulfidation gold–copper deposits in Taiwan. Chemical Geology, 154(1-4), 155–167. https://doi.org/10.1016/S0009-2541(98)00129-6
  • Whalen, J., Currie, K., & Chappell, B. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4), 407–419. https://doi.org/10.1007/BF00402202
  • White, N. C., & Hedenquist, J. W. (1990). Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36(1-3), 445–474. https://doi.org/10.1016/0375-6742(90)90063-G
  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371
  • Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4), 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
  • Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H., & Xu, P. (2006). Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology, 234(1-2), 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003
  • Xie, Y., Li, L., Wang, B., Li, G., Liu, H., Li, Y., Dong, S., & Zhou, J. (2017). Genesis of the Zhaxikang epithermal Pb–Zn–Sb deposit in southern Tibet, China: Evidence for a magmatic link. Ore Geology Reviews, 80, 891–909. https://doi.org/10.1016/j.oregeorev.2016.08.007
  • Yardley, B. W. D. (2005). Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100(4), 613–632. https://doi.org/10.2113/gsecongeo.100.4.613
  • Yasami, N., & Ghaderi, M. (2019). Distribution of alteration, mineralization and fluid inclusion features in porphyry–high sulfidation epithermal systems: The Chodarchay example, NW Iran. Ore Geology Reviews, 104, 227–245. https://doi.org/10.1016/j.oregeorev.2018.11.006
  • Zamani, R., Emami, M. H., Abedini Vosoughi, M., & Somarin Karimzadeh, A. (2015). Petrogenesis of the Eocene post-collisional alkaline volcanism in Meshginshahr, NW Iran. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 275(3), 285–304. https://doi.org/10.1127/njgpa/2015/0473
  • Zamanian, H., Rahmani, S., & Zareisahameih, R. (2019). Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu–Au deposit in Zanjan Province, NW Iran: Implications for ore genesis. Ore Geology Reviews, 112, 103014. https://doi.org/10.1016/j.oregeorev.2019.103014
  • Zhang, J., Chen, Y. J., Pirajno, F., Deng, J., Chen, H. Y., & Wang, C. M. (2013). Geology, C–H–O–S–Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, central China: Implication for ore genesis. Ore Geology Reviews, 53, 343–356. https://doi.org/10.1016/j.oregeorev.2013.01.017
  • Zhou, J. X., Huang, Z. L., Bao, G. P., & Gao, J. G. (2013). Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb–Zn metallogenic province, SW China. Journal of Earth Science, 24(5), 759–771. https://doi.org/10.1007/s12583-013-0372-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.