Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 71, 2024 - Issue 3
167
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Aspidella and water escape structures from the ca 850 Ma (Tonian) Heavitree Formation, Amadeus Basin, Central Australia

ORCID Icon &
Pages 361-369 | Received 08 Oct 2023, Accepted 26 Nov 2023, Published online: 18 Dec 2023

References

  • Adderley, D. (2014). Mt Kitty 1 basic well completion report. Northern Territory Geological Survey Report PR2015-0010. Santos.
  • Bechstädt, T., Jäger, H., Rittersbacher, A., Schweisfurth, B., Spence, G., Werner, G., & Boni, M. (2018). The Cryogenian Ghaub Formation of Namibia: New insights into Neoproterozoic glaciations. Earth-Science Reviews, 177, 678–714. https://doi.org/10.1016/j.earscirev.2017.11.028
  • Boag, T. H., Darroch, S. A. F., & Laflamme, M. (2016). Ediacaran distributions in space and time: Testing assemblage concepts of earliest macroscopic body fossils. Paleobiology, 42(4), 574–594. https://doi.org/10.1017/pab.2016.20
  • Brocks, J. J., & Butterfield, N. J. (2009). Early animals out in the cold. Nature, 457(7230), 672–673. https://doi.org/10.1038/457672a
  • Clark, D. (1974). Heavitree Quartzite stratigraphy and structure near Alice Springs, N.T. Northern Territory Geological Survey, Record, 74/(9), 37.
  • Conybeare, C. E. B., & Crook, K. A. W. (1968). Manual of sedimentary structures. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 102, 1–327. https://d28rz98at9flks.cloud front.net/151/Bull102_2nd.pdf
  • Cordani, U. G., Fairchild, T. R., Ganade, C. E., Babinski, M., & de Moraes Leme, J. (2020). Dawn of metazoans: To what extent was this influenced by the onset of “modern-type plate tectonics”? Brazilian Journal of Geology, 50(2), e20190095. https://doi.org/10.1590/2317-4889202020190095
  • Costa-Paiva, E. M., Mello, B., Bezerra, B. S., Coates, C. J., Halanych, K. M., Brown, F., Leme, J. deM., & Trindale, R. I. F. (2021). Molecular dating of blood pigment hemocyanin provides new insight into the origin of animals. Geobiology, 00, 1–13. https://doi.org/10.1111/gbi.12481
  • Cunningham, J. A., Liu, A. G., Bengtson, S., & Donoghue, P. C. J. (2016). The origin of animals: Can molecular clocks and the fossil record be reconciled? Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 39(1), 1–12. pp. https://doi.org/10.1002/bies.201600120
  • Deville, E. (2009). Chapter 5: Mud volcano systems. In N. Lewis & A. Moretti (Eds.), Volcanoes: Formation, eruptions and modelling (pp. 95–126). Nova Science Publishers.
  • Dzik, J., & Martyshyn, A. (2017). Hydraulic sediment penetration and seasonal growth of petalonamean basal discs from the Ukraine. Precambrian Research, 302, 140–149. https://doi.org/10.1016/j.precamres.2017.09.024
  • Fedonkin, M. A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7(1), 9–41. https://doi.org/10.2517/prpsj.7.9
  • Gehling, J. G. (1986). Algal binding of siliciclastic sediments: A mechanism for the preservation of Ediacaran fossils [Paper presentation]. 12th International Sedimentological Congress, Abstracts, 117.
  • Glaessner, M. F. (1969). Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2(4), 369–393. https://doi.org/10.1111/j.1502-3931.1969.tb01258.x
  • Glaessner, M. F., & Wade, M. (1966). The Late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9(4), 599–628.
  • Glaessner, M. F., & Walter, M. R. (1975). New Precambrian fossils from the Amadeus Basin, Northern Territory, Australia. Bureau of Mineral Resources, Geology & Geophysics Record, 17, 23.
  • Glikson, A. Y., Stewart, A. J., Ballhaus, C. G., Clarke, G. L., Feeken, E. H. J., Leven, J. H., Sheraton, J. W., & Sun, S-S. (1996). Geology of the western Musgrave Block, central Australia, with particular reference to the mafic-ultramafic Giles Complex. Australian Geological Survey Organisation Bulletin, 239, 206.
  • Gorter, J. D., & Plummer, P. S. (2023, July). Were jellyfish stranded on a shoreline sand ca 850 million years ago in the Amadeus Basin of central Australia? [Paper presentation]. Abstracts & Conference Book Guide: Palaeo down under 3, p. 50.
  • Hall, C. M. S., Droser, M. L., Clites, E. C., & Gehling, J. G. (2020). The short-lived but successful tri-radial body plan: A view from the Ediacaran of Australia. Australian Journal of Earth Sciences, 67(6), 885–895. https://doi.org/10.1080/08120099.2018.1472666
  • Inglez, L., Warren, L. V., Quaglio, F., Netto, R. G., Okubo, J., Arrouy, M. J., Simões, M. G., & Poiré, D. G. (2021). Scratching the discs: Evaluating alternative hypotheses for the origin of the Ediacaran discoidal structures from the Cerro Negro Formation, La Providencia Group, Argentina. Geological Magazine, 159(7), 1192–1209. https://doi.org/10.1017/S0016756821000327
  • Johnson, H. D. (1977). Sedimentation and water escape structures in some Late Precambrian shallow marine sandstones from Finnmark, north Norway. Sedimentology, 24(3), 389–411. https://doi.org/10.1111/j.1365-3091.1977.tb00129.x
  • Knaust, D. (2015). Siphonichnidae (new ichnofamily) attributed to the burrowing activity of bivalves: Ichnotaxonomy, behaviour and palaeoenvironmental implications. Earth-Science Reviews, 150, 497–519. https://doi.org/10.1016/j.earscirev.2015.07.014
  • Lindsay, J. F. (1991). New evidence for ancient metazoan life in the Late Proterozoic Heavitree Quartzite, Amadeus Basin, central Australia. In R. J. Korsch & J. M. Kennard (Eds.), Geological and geophysical studies in the Amadeus Basin, central Australia (Vol. 236, pp. 91–95). Bureau of Mineral Resources, Geology and Geophysics Bulletin.
  • Lindsay, J. F. (1999). Heavitree Quartzite, a Neoproterozoic (ca 800–760 Ma), high-energy, tidally influenced, ramp association, Amadeus Basin, central Australia. Australian Journal of Earth Sciences, 46(1), 127–139. https://doi.org/10.1046/j.1440-0952.1999.00693.x
  • Liu, A. S., Brasier, M. D., Bogolepova, O. K., Raevskaya, E. G., & Gubanov, A. P. (2013). First report of a newly discovered Ediacaran biota from the Irkineeva Uplift, East Siberia. Newsletters on Stratigraphy, 46(2), 95–110. https://doi.org/10.1127/0078-0421/2013/0031
  • Liu, A. G., & Conliffe, J. (2015). The Ediacaran fossils of the Avalon Peninsula. 2015 Fall Field Trip, Geological Association of Canada, Newfoundland & Labrador Section (pp. 232–272).
  • MacGabhaan, B. A. (2007). Discoidal fossils of the Ediacaran biota: A review of current understanding. In P. Vickers-Rich & P. Komarower (Eds.), The rise and fall of the Ediacaran biota (Vol. 286, pp. 297–313). Geological Society of London, Special Publication. https://doi.org/10.1144/SP286.21
  • Meert, J. G., Gibsher, A. S., Levashova, N. M., Grice, W. C., Kamenov, G. D., & Ryabinin, A. B. (2011). Glaciation and ∼770 Ma Ediacara (?) fossils from the Lesser Karatau microcontinent, Kazakhstan. Gondwana Research, 19(4), 867–880. https://doi.org/10.1016/j.gr.2010.11.008
  • Menapace, W., Kopf, A., Zabel, M., & de Beer, D. (2017). Chapter 3: Mud volcanoes as dynamic sedimentary phenomena that host marine ecosystems. In J. Lakkmeyer (Ed.), Life at Vents and Seeps. De Gruyter. https://doi.org/10.1515/9783110493672-003
  • Normington, V. J., & Donnellan, N. (2020). Characterisation of the Neoproterozoic succession of the northeastern Amadeus Basin, Northern Territory. Northern Territory Geological Survey, Record 2020-010, 142 pp.
  • Plummer, P. S. (1980). Circular structures in a Late Precambrian sandstone: Fossil medusoids or evidence of fluidization? Transactions of the Royal Society of South Australia, 104(1), 13–16.
  • Plummer, P. S. (2015). Heavitree Quartzite: Its place within the Centralian Superbasin. Annual Geoscience Exploration Seminar (AGES) 2015. Northern Territory Geological Survey Record, 2015-002, pp. 83–91.
  • Plummer, P. S. (2021). Was the Amadeus Basin of Central Australia a crucible for pre-Ediacaran macro-biotic evolutionary trials? Transactions of the Royal Society of South Australia, 145(2), 125–142. https://doi.org/10.1080/03721426.2021.1935585
  • Plummer, P. S. (2022). Failed evolutionary trials: Should we expect to find fossil evidence? Academia Letters, 5212, 6. https://doi.org/10.20935/AL5212
  • Pu, J. P., Bowring, S. A., Ramezani, J., Myrow, P., Raub, T. D., Landing, E., Mills, A., Hodgin, E., & Macdonald, F. A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44(11), 955–958. https://doi.org/10.1130/G38284.1
  • Ranford, L. C., Cook, P. J., & Wells, A. T. (1965). The geology of the central part of the Amadeus Basin, Northern Territory. Bureau of Mineral Resources, Geology and Geophysics Report, 86, 56. https://d28rz98at9flks.cloudfront.net/15000/Rep_086.pdf
  • Retallack, G. J., & Broz, A. P. (2020). Arumberia and other Ediacaran–Cambrian fossils of central Australia. Historical Biology, 33(10), 1964–1988. https://doi.org/10.1080/08912963.2020.1755281
  • Slagter, S., Hao, W., Planavsky, N. J., Konhauser, K. O., & Tarhan, L. G. (2022). Biofilms as agents of Ediacara-style fossilisation. Scientific Reports, 12(1), 8631. https://doi.org/10.1038/s41598-022-12473-1
  • Spence, G. H., Le Heron, D. P., & Fairchild, I. J. (2016). Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology, 63(2), 253–306. https://doi.org/10.1111/sed.12261
  • Sperling, E. A., & Stockey, R. G. (2018). The temporal and environmental context of early animal evolution: Considering all the ingredients of an “explosion”. Integrative and Comparative Biology, 58(4), 605–622. https://doi.org/10.1093/icb/icy088
  • Sprigg, R. G. (1949). Early Cambrian “jellyfishes” of Ediacara, South Australia, and Mount John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia, 73(1), 72–99.
  • Troppenz, U-M. (2021). News from the past. Tetrada Verlag.
  • Wade, M. (1969). Medusae from uppermost Precambrian or Cambrian sandstones, central Australia. Palaeontology, 12(3), 351–365.
  • Wakelin-King, G., & Austin, L. (1992). Magee 1: EP38, Northern Territory, well completion report (unpublished). Pacific Oil & Gas Pty.
  • Walter, M. R. (1980). Adelaidean and Early Cambrian stratigraphy of the southwestern Georgina Basin: Correlation chart and explanatory notes. Bureau of Mineral Resources Australia Report, 214, 21.
  • Walter, M. R., Veevers, J. J., Calver, C. R., Gorjan, P., & Hill, A. C. (2000). Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 100(1-3), 371–433. https://doi.org/10.1016/S0301-9268(99)00082-0
  • Wan, B., Yuan, X., Chen, Z., Guan, C., Pang, K., Tang, Q., & Xiao, S. (2016). Systematic description of putative animal fossils from the early Ediacaran Lantian Formation of South China. Palaeontology, 59(4), 515–532. https://doi.org/10.1111/pala.12242
  • Wang, R., Shen, B., Lang, X., Wen, B., Ma, H., Yin, Z., Peng, Y., Liu, Y., & Zhou, C. (2021). A 20 million-year Great Ediacaran Glaciation witnessed the rise of the earliest animals. Research Square, 14. https://doi.org/10.21203/rs.3.rs-793746/v1
  • Wells, A. T., Forman, D. J., Ranford, L. C., & Cook, P. J. (1970). Geology of the Amadeus Basin, central Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 100, 222.
  • Wells, A. T., Ranford, L. C., Stewart, A. J., Cook, P. J., & Shaw, R. D. (1967). Geology of the north-eastern part of the Amadeus Basin, Northern Territory. Bureau of Mineral Resources, Geology and Geophysics Report, 113, 93.
  • Wingate, M. T. D., Campbell, I. H., Compston, W., & Gibson, G. M. (1998). Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research, 87(3-4), 135–159. https://doi.org/10.1016/S0301-9268(97)00072-7
  • Wyborn, L., Hazell, M., Page, R., Idnurm, M., & Sun, S. (1998). A newly discovered major Proterozoic granite alteration system in the Mount Webb region, central Australia, and implications for Cu–Au mineralisation. Australian Geological Survey Organisation, Research Newsletter, 28, 1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.