Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 71, 2024 - Issue 3
483
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mid-Jurassic volcanism at Bokhara River and insights into metasomatism in the lithospheric mantle of the Thomson Orogen, eastern Australia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 325-337 | Received 18 Jul 2023, Accepted 23 Dec 2023, Published online: 22 Feb 2024

References

  • Andersen, T., O’Reilly, S. Y., & Griffin, W. L. (1984). The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: Implications for mantle metasomatism. Contributions to Mineralogy and Petrology, 88(1-2), 72–85. https://doi.org/10.1007/BF00371413
  • Barron, B. J., Robertson, A. D., & Sutherland, F. L. (1996). Olivine ‘leucitites’, their xenolith and megacryst suites, Hoskings Peaks, north Queensland. Australian Journal of Earth Sciences, 43(3), 231–244. https://doi.org/10.1080/08120099608728251
  • Brey, G. P., K Hler, T., & Nickel, K. G. (1990). Geothermobarometry in four-phase lherzolites I. Experimental results from 10 to 60 kb. Journal of Petrology, 31(6), 1313–1352. https://doi.org/10.1093/petrology/31.6.1313
  • Cohen, B. E., Knesel, K. M., Vasconcelos, P. M., Thiede, D. S., & Hergt, J. M. (2008). 40Ar/39Ar constraints on the timing and origin of Miocene leucitite volcanism in southeastern Australia. Australian Journal of Earth Sciences, 55(3), 407–418. https://doi.org/10.1080/08120090701769514
  • Crossingham, T. J., Ubide, T., Vasconcelos, P. M., Knesel, K. M., & Mallmann, G. (2018). Temporal constraints on magma generation and differentiation in a continental volcano: Buckland, eastern Australia. Lithos, 302-303, 341–358. https://doi.org/10.1016/j.lithos.2018.01.009
  • Davies, D. R., & Rawlinson, N. (2014). On the origin of recent intraplate volcanism in Australia. Geology, 42(12), 1031–1034. https://doi.org/10.1130/G36093.1
  • Davies, D. R., Rawlinson, N., Iaffaldano, G., & Campbell, I. H. (2015). Lithospheric controls on magma composition along Earth’s longest continental hotspot track. Nature, 525(7570), 511–514. https://doi.org/10.1038/nature14903
  • De Hoog, J. C. M., Gall, L., & Cornell, D. H. (2010). Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4), 196–215. https://doi.org/10.1016/j.chemgeo.2009.11.017
  • Demidjuk, Z., Turner, S., Sandiford, M., George, R., Foden, J., & Etheridge, M. (2007). U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia. Earth and Planetary Science Letters, 261(3-4), 517–533. https://doi.org/10.1016/j.epsl.2007.07.006
  • Doe, A. R. D., & Palmer, D. C. (1997). First annual report for the period ending 28 May 1997 EL 5023 Bokhara River, NSW (RIN R00020007). Oxiana Resources NL. https://search.geoscience.nsw.gov.au/report/R00020007
  • Duvernay, T., Davies, D. R., Mathews, C. R., Gibson, A. H., & Kramer, S. C. (2021). Linking intraplate volcanism to lithospheric structure and asthenospheric flow. Geochemistry, Geophysics, Geosystems, 22(8), 1–29. https://doi.org/10.1029/2021GC009953
  • Ezad, I. S., Dobson, D. P., Thomson, A. R., Jennings, E. S., Hunt, S. A., & Brodholt, J. P. (2022). Kelyphite textures experimentally reproduced through garnet breakdown in the presence of a melt phase. Journal of Petrology, 63(11), egac110. https://doi.org/10.1093/petrology/egac110
  • Ferguson, J., & Sheraton, J. W. (1979). Petrogenesis of kimberlitic rocks and associated xenoliths of southeastern Australia. In H. O. A. Meyer, & F. R. Boyd (Eds.), Kimberlites, diatremes, and diamonds: Their geology, petrology, and geochemistry (pp. 140–160). American Geophysical Union, Special Publication 15. https://doi.org/10.1029/SP015p0140
  • Foley, S. F., Yaxley, G. M., Rosenthal, A., Buhre, S., Kiseeva, E. S., Rapp, R. P., & Jacob, D. E. (2009). The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112, 274–283. https://doi.org/10.1016/j.lithos.2009.03.020
  • Frey, F. A., & Green, D. H. (1974). The mineralogy, geochemistry and origin of Iherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta, 38(7), 1023–1059. https://doi.org/10.1016/0016-7037(74)90003-9
  • Geophysical Acquisition & Processing Section. (1995). NSW DMR, Discovery 2000, 1994-95, Area D, Surat Basin. Dataset. https://doi.org/10.4225/25/56258CB354659
  • Gibson, D. L. (2007). Potassium–argon ages of late Mesozoic and Cainozoic Igneous Rocks of Eastern Australia. CRC LEME Open File Report 193. http://crcleme.org.au/Pubs/OPEN%20FILE%20REPORTS/OFR%20193/OFR%20193%20plus%20Appx1-4.pdf
  • Glen, R. A., Belousova, E., & Griffin, W. L. (2016). Different styles of modern and ancient non-collisional orogens and implications for crustal growth: A Gondwanaland perspective. Canadian Journal of Earth Sciences, 53(11), 1372–1415. https://doi.org/10.1139/cjes-2015-0229
  • Griffin, W. L., Sutherland, F. L., & Hollis, J. D. (1987). Geothermal profile and crust–mantle transition beneath east-central Queensland: Volcanology, xenolith petrology and seismic data. Journal of Volcanology and Geothermal Research, 31(3-4), 177–203. https://doi.org/10.1016/0377-0273(87)90067-9
  • Hardman, J. P. A., Holford, S. P., Schofield, N., Bunch, M., & Gibbins, D. (2019). The Warnie volcanic province: Jurassic intraplate volcanism in Central Australia. Gondwana Research, 76, 322–347. https://doi.org/10.1016/j.gr.2019.06.012
  • Hawkesworth, C., George, R., Turner, S., & Zellmer, G. (2003). Estimating the time scales of magmatic processes. In B. De Vivo & R. J. Bodnar (Eds.), Melt inclusions in volcanic systems: Methods, applications and problems (Vol. 5, pp. 23–43). Elsevier Science BV. https://doi.org/10.1016/S1871-644X(03)80022-0
  • Heath, M., Phillips, D., & Matchan, E. L. (2018). An evidence-based approach to accurate interpretation of 40Ar/39Ar ages from basaltic rocks. Earth and Planetary Science Letters, 498, 65–76. https://doi.org/10.1016/j.epsl.2018.06.024
  • Irving, A. J. (1980). Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. American Journal of Science, 280-A, 389–416.
  • Irving, A. J., & Green, D. H. (1976). Geochemistry and petrogenesis of the Newer Basalts of Victoria and South Australia. Journal of the Geological Society of Australia, 23(1), 45–66. https://doi.org/10.1080/00167617608728920
  • Jacques, A. L. (2008). Australian diamond deposits, kimberlites, and related rocks 1:5 000 000 scale map. Geoscience Australia. https://d28rz98at9flks.cloudfront.net/61710/61710.pdf
  • Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: A new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29(3), 333–338. https://doi.org/10.1111/j.1751-908X.2005.tb00904.x
  • Johnson, R. W., & Wellman, P. (1989). Framework for volcanism. In R. W. Johnson (Ed.), Intraplate volcanism in Eastern Australia and New Zealand (pp. 1–53). Cambridge University Press.
  • Jones, I., Ubide, T., Crossingham, T., Wilding, B., & Verdel, C. (2020). Evidence of a common source component for east Australian Cenozoic mafic magmatism. Lithos, 354-355, 105254. https://doi.org/10.1016/j.lithos.2019.105254
  • Klemme, S. (2004). The influence of Cr on the garnet–spinel transition in the Earth’s mantle: Experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos, 77(1-4), 639–646. https://doi.org/10.1016/j.lithos.2004.03.017
  • Klemme, S., & O’Neill, H. S. (2000). The near-solidus transition from garnet lherzolite to spinel lherzolite. Contributions to Mineralogy and Petrology, 138(3), 237–248. https://doi.org/10.1007/s004100050560
  • Köhler, T. P., & Brey, G. P. (1990). Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta, 54(9), 2375–2388. https://doi.org/10.1016/0016-7037(90)90226-B
  • Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee, J. B., & Kim, J. S. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta, 70, 4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563
  • Liu, Z., Shea, J. J., Foley, S. F., Bussweiler, Y., Rohrbach, A., Klemme, S., & Berndt, J. (2021). Clarifying source assemblages and metasomatic agents for basaltic rocks in eastern Australia using olivine phenocryst compositions. Lithos, 390-391, 106122. https://doi.org/10.1016/j.lithos.2021.106122
  • Ludwig, K. R. (2003). User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Special publication. Berkeley Geochronology Center.
  • Matchan, E. L., & Phillips, D. (2014). High precision multi-collector 40Ar/39Ar dating of young basalts: Mount Rouse volcano (SE Australia) revisited. Quaternary Geochronology, 22, 57–64. https://doi.org/10.1016/j.quageo.2014.02.005
  • McDonough, W. F. (1990). Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters, 101(1), 1–18. https://doi.org/10.1016/0012-821X(90)90119-I
  • McDougall, I., & Harrison, T. M. (1999). Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press.
  • Menzies, M. A., & Wass, S. Y. (1983). CO2- and LREE-rich mantle below eastern Australia: A REE and isotopic study of alkaline magmas and apatite-rich mantle xenoliths from the Southern Highlands Province, Australia. Earth and Planetary Science Letters, 65(2), 287–302. https://doi.org/10.1016/0012-821X(83)90167-X
  • Navon, O., & Stolper, E. (1987). Geochemical consequences of melt percolation: The Upper Mantle as a chromatographic column. The Journal of Geology, 95(3), 285–307. https://www.jstor.org/stable/30061937 https://doi.org/10.1086/629131
  • Obata, M., & Ozawa, K. (2011). Topotaxic relationships between spinel and pyroxene in kelyphite after garnet in mantle-derived peridotites and their implications to reaction mechanism and kinetics. Mineralogy and Petrology, 101(3-4), 217–224. https://doi.org/10.1007/s00710-011-0145-y
  • O’Neill, H. S. (1981). The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy and Petrology, 77(2), 185–194. https://doi.org/10.1007/BF00636522
  • Oostingh, K. F., Jourdan, F., Merle, R., & Chiaradia, M. (2016). Spatio-temporal geochemical evolution of the SE Australian Upper Mantle deciphered from the Sr, Nd and Pb isotope compositions of Cenozoic intraplate volcanic rocks. Journal of Petrology, 57, egw048. https://doi.org/10.1093/petrology/egw048
  • O’Reilly, S. Y., & Griffin, W. L. (1985). A xenolith-derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics, 111(1-2), 41–63. https://doi.org/10.1016/0040-1951(85)90065-4
  • O’Reilly, S. Y., & Griffin, W. L. (1987). Eastern Australia – 4000 kilometres of mantle samples, Mantle Xenoliths. Wiley.
  • O’Reilly, S. Y., & Griffin, W. L. (1988). Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochimica et Cosmochimica Acta, 52(2), 433–447. https://doi.org/10.1016/0016-7037(88)90099-3
  • O’Reilly, S. Y., & Griffin, W. L. (2000). Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos, 53(3-4), 217–232. https://doi.org/10.1016/S0024-4937(00)00026-8
  • O’Reilly, S. Y., & Griffin, W. L. (2013). Mantle metasomatism. In D. E. Harlov, & H. Austrheim (Eds.), Metasomatism and the chemical transformation of rock: The role of fluids in terrestrial and extraterrestrial processes (pp. 471–533). Springer. https://doi.org/10.1007/978-3-642-28394-9_12
  • Palme, H., & O’Neill, H. (2013). Cosmochemical estimates of mantle composition. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 1–39). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00201-1
  • Pearson, N. J., O’Reilly, S. Y., & Griffin, W. L. (1991). Heterogeneity in the thermal state of the lower crust and upper mantle beneath eastern Australia. Exploration Geophysics, 22(2), 295–298. https://doi.org/10.1071/EG991295
  • Phillips, D., & Matchan, E. L. (2013). Ultra-high precision 40Ar/39Ar ages for Fish Canyon Tuff and Alder Creek Rhyolite sanidine: New dating standards required? Geochimica et Cosmochimica Acta, 121, 229–239. https://doi.org/10.1016/j.gca.2013.07.003
  • Phillips, D., Matchan, E. L., Dalton, H., & Kuiper, K. F. (2022). Revised astronomically calibrated 40Ar/39Ar ages for the Fish Canyon Tuff sanidine – Closing the interlaboratory gap. Chemical Geology, 597, 120815. https://doi.org/10.1016/j.chemgeo.2022.120815
  • Pringle, I. J. (2003). EL 5023 final report The Bokhara Diamond Project (RIN R00056994). Oxiana Resources NL. https://search.geoscience.nsw.gov.au/report/R00056994
  • Rawlinson, N., Davies, D. R., & Pilia, S. (2017). The mechanisms underpinning Cenozoic intraplate volcanism in eastern Australia: Insights from seismic tomography and geodynamic modeling. Geophysical Research Letters, 44(19), 9681–9690. https://doi.org/10.1002/2017GL074911
  • Rawlinson, N., Pilia, S., Young, M., Salmon, M., & Yang, Y. (2016). Crust and upper mantle structure beneath southeast Australia from ambient noise and teleseismic tomography. Tectonophysics, 689, 143–156. https://doi.org/10.1016/j.tecto.2015.11.034
  • Roach, I. C., Hill, S. M., & Lewis, A. C. (2008). Evolution of a small intraplate basaltic lava field: Jerrabattgulla Creek, upper Shoalhaven River catchment, southeast New South Wales. Australian Journal of Earth Sciences, 55, 1049–1061. https://doi.org/10.1080/08120090802266543
  • Shea, J. J., Ezad, I. S., Foley, S. F., & Lanati, A. W. (2022). The Eastern Australian Volcanic Province, its primitive melts, constraints on melt sources and the influence of mantle metasomatism. Earth-Science Reviews, 233, 104168. https://doi.org/10.1016/j.earscirev.2022.104168
  • Shea, J. J., & Foley, S. F. (2019). Evidence for a carbonatite-influenced source assemblage for intraplate basalts from the Buckland Volcanic Province, Queensland, Australia. Minerals, 9(9), 546. https://doi.org/10.3390/min9090546
  • Shea, J., Foley, S., Dalton, H., Lanati, A., & Phillips, D. (2024). Geochemical analyses on the magmatic component and mantle xenoliths from a diatreme at Bokhara River, eastern Australia [Data set]. In Australian Journal of Earth Sciences. Zenodo. https://doi.org/10.5281/zenodo.10450582
  • Soesoo, A., Bons, P. D., & Elburg, M. A. (1999). Freestone dykes—An alkali‐rich Jurassic dyke population in eastern Victoria. Australian Journal of Earth Sciences, 46(1), 1–9. https://doi.org/10.1046/j.1440-0952.1999.00682.x
  • Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362. https://doi.org/10.1016/0012-821X(77)90060-7
  • Sutherland, F. L. (1978). Mesozoic–Cainozoic volcanism of Australia. Tectonophysics, 48(3-4), 413–427. https://doi.org/10.1016/0040-1951(78)90126-9
  • Sutherland, F. L., Raynor, L. R., & Pogson, R. E. (1994). Spinel to garnet lherzolite transition in relation to high temperature palaeogeotherms, eastern Australia. Australian Journal of Earth Sciences, 41(3), 205–220. https://doi.org/10.1080/08120099408728130
  • Wang, X-C., Wilde, S. A., Xu, B., & Pang, C-J. (2016). Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 261, 5–45. https://doi.org/10.1016/j.lithos.2015.12.014
  • Wellman, P., & McDougall, I. (1974). Cainozoic igneous activity in eastern Australia. Tectonophysics, 23(1-2), 49–65. https://doi.org/10.1016/0040-1951(74)90110-3
  • Woodland, A. B., Seitz, H. M., & Yaxley, G. M. (2004). Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos, 75(1-2), 55–66. https://doi.org/10.1016/j.lithos.2003.12.014
  • Yaxley, G. M. (1993). Carbonatite metasomatism in the mantle: Sources and roles of carbonate in metasomatism enrichment processes in the lithosphere [unpublished PhD thesis]. University of Tasmania. https://figshare.utas.edu.au/articles/thesis/Carbonatite_metasomatism_in_the_mantle_sources_and_roles_of_carbonate_in_metasomatic_enrichment_processes_in_the_lithosphere/23242538
  • Yaxley, G. M., Crawford, A. J., & Green, D. H. (1991). Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters, 107(2), 305–317. https://doi.org/10.1016/0012-821X(91)90078-V
  • Yaxley, G. M., Green, D. H., & Kamenetsky, V. (1998). Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39(11-12), 1917–1930. https://doi.org/10.1093/petroj/39.11-12.1917