150
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Vinpocetine mitigates methotrexate-induced duodenal intoxication by modulating NF-κB, JAK1/STAT-3, and RIPK1/RIPK3/MLKL signals

, , , ORCID Icon, , , ORCID Icon & show all
Pages 11-19 | Received 27 Jan 2023, Accepted 17 Jul 2023, Published online: 03 Aug 2023

References

  • Genestier L, Paillot R, Quemeneur L, et al. Mechanisms of action of methotrexate. Immunopharmacology. 2000;47(2–3):247–257. doi: 10.1016/s0162-3109(00)00189-2.
  • Hashkes PJ, Becker ML, Cabral DA, et al. Methotrexate: new uses for an old drug. J Pediatr. 2014;164(2):231–236. doi: 10.1016/j.jpeds.2013.10.029.
  • Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163–172. doi: 10.1124/pr.57.2.3.
  • Kinder AJ, Hassell AB, Brand J, et al. The treatment of inflammatory arthritis with methotrexate in clinical practice: treatment duration and incidence of adverse drug reactions. Rheumatology. 2005;44(1):61–66. doi: 10.1093/rheumatology/keh512.
  • Soares PM, Lopes LO, Mota JM, et al. Methotrexate-induced intestinal mucositis delays gastric emptying and gastrointestinal transit of liquids in awake rats. Arq Gastroenterol. 2011;48(1):80–85. doi: 10.1590/s0004-28032011000100016.
  • Sener G, Ekşioğlu-Demiralp E, Cetiner M, et al. L-Carnitine ameliorates methotrexate-induced oxidative organ injury and inhibits leukocyte death. Cell Biol Toxicol. 2006;22(1):47–60. doi: 10.1007/s10565-006-0025-0.
  • Kolli VK, Abraham P, Isaac B, et al. Preclinical efficacy of melatonin to reduce methotrexate-induced oxidative stress and small intestinal damage in rats. Dig Dis Sci. 2013;58(4):959–969. doi: 10.1007/s10620-012-2437-4.
  • Sonis ST, Elting LS, Keefe D, et al. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100(9 Suppl):1995–2025. doi: 10.1002/cncr.20162.
  • Miyazono Y, Gao F, Horie T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol. 2004;39(11):1119–1127. doi: 10.1080/00365520410003605.
  • Sayed AM, Abdel-Fattah MM, Arab HH, et al. Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem Biol Interact. 2022;351:109732. doi: 10.1016/j.cbi.2021.109732.
  • Challa S, Chan FK. Going up in flames: necrotic cell injury and inflammatory diseases. Cell Mol Life Sci. 2010;67(19):3241–3253. doi: 10.1007/s00018-010-0413-8.
  • Yang XS, Yi TL, Zhang S, et al. Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury. Sci Rep. 2017;7(1):5818. doi: 10.1038/s41598-017-06088-0.
  • Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013;27(15):1640–1649. doi: 10.1101/gad.223321.113.
  • Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11(10):700–714. doi: 10.1038/nrm2970.
  • Patankar JV, Becker C. Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol. 2020;17(9):543–556. doi: 10.1038/s41575-020-0326-4.
  • Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–227. doi: 10.1016/j.cell.2011.11.031.
  • Chen X, Li W, Ren J, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 2014;24(1):105–121. doi: 10.1038/cr.2013.171.
  • Dondelinger Y, Declercq W, Montessuit S, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–981. doi: 10.1016/j.celrep.2014.04.026.
  • Glab JA, Doerflinger M, Nedeva C, et al. DR5 and caspase-8 are dispensable in ER stress-induced apoptosis. Cell Death Differ. 2017;24(5):944–950. doi: 10.1038/cdd.2017.53.
  • Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994;269(49):30761–30764. doi: 10.1016/S0021-9258(18)47344-9.
  • Wang JW, Pan YB, Cao YQ, et al. Loganin alleviates LPS-activated intestinal epithelial inflammation by regulating TLR4/NF-κB and JAK/STAT3 signaling pathways. Kaohsiung J Med Sci. 2020;36(4):257–264. doi: 10.1002/kjm2.12160.
  • Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19(21):2548–2556. doi: 10.1038/sj.onc.1203551.
  • Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–3247. doi: 10.1007/s00018-016-2223-0.
  • Hassanein EHM, Althagafy HS, Atwa AM, et al. Taurine attenuated methotrexate-induced intestinal injury by regulating NF-κB/iNOS and Keap1/Nrf2/HO-1 signals. Life Sci. 2022;311(Pt A):121180. doi: 10.1016/j.lfs.2022.121180.
  • Natarajan K, Abraham P, Kota R, et al. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol. 2018;118:766–783. doi: 10.1016/j.fct.2018.06.040.
  • Zhang YS, Li JD, Yan C. An update on vinpocetine: new discoveries and clinical implications. Eur J Pharmacol. 2018;819:30–34. doi: 10.1016/j.ejphar.2017.11.041.
  • Zhang C, Yan C. Updates of recent vinpocetine research in treating cardiovascular diseases. J Cell Immunol. 2020;2(5):211–219.
  • Bagoly E, Fehér G, Szapáry L. The role of vinpocetine in the treatment of cerebrovascular diseases based in human studies. Orv Hetil. 2007;148(29):1353–1358. doi: 10.1556/OH.2007.28115.
  • Patyar S, Prakash A, Modi M, et al. Role of vinpocetine in cerebrovascular diseases. Pharmacol Rep. 2011;63(3):618–628. doi: 10.1016/s1734-1140(11)70574-6.
  • Balestreri R, Fontana L, Astengo F. A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriatr Soc. 1987;35(5):425–430. doi: 10.1111/j.1532-5415.1987.tb04664.x.
  • Elnfarawy AA, Nashy AE, Abozaid AM, et al. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum Exp Toxicol. 2021;40(2):355–368. doi: 10.1177/0960327120947453.
  • Ali AA, Kamal MM, Khalil MG, et al. Behavioral, biochemical and histopathological effects of standardised pomegranate extract with vinpocetine, propolis or cocoa in a rat model of Parkinson’s disease. Exp Aging Res. 2022;48(2):191–210. doi: 10.1080/0361073X.2021.1959823.
  • Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, et al. Berberine and/or zinc protect against methotrexate-induced intestinal damage: role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways. Life Sci. 2022;306:120697. doi: 10.1016/j.lfs.2021.119754.
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271–278. doi: 10.1016/0003-2697(78)90342-1.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6.
  • Montgomery HAC, Dymock J. Determination of nitrite in water. Analyst. 1961;86:414–416.
  • Keen JH, Habig WH, Jakoby WB. Mechanism for the several activities of the glutathione S-transferases. J Biol Chem. 1976;251(20):6183–6188. doi: 10.1016/S0021-9258(20)81842-0.
  • Marklund SL. Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice, nude mice and normal BALB/c mice. Mutat Res. 1985;148(1–2):129–134. doi: 10.1016/0027-5107(85)90216-7.
  • Krawisz J, Sharon P, Stenson WJG. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: assessment of inflammation in rat and hamster models. Gastroenterology. 1984;87(6):1344–1350. doi: 10.1016/0016-5085(84)90202-6.
  • Bancroft JD, Gamble M. Theory and practice of histological techniques. China: Churchill Livingstone, Elsevier; 2008.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3.
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350.
  • Sirotnak FM, Moccio DM, Dorick DM. Optimization of high-dose methotrexate with leucovorin rescue therapy in the L1210 leukemia and sarcoma 180 murine tumor models. Cancer Res. 1978;38(2):345–353.
  • Widemann BC, Balis FM, Kempf-Bielack B, et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer. 2004;100(10):2222–2232. doi: 10.1002/cncr.20255.
  • Perez-Verdia A, Angulo F, Hardwicke FL, et al. Acute cardiac toxicity associated with high-dose intravenous methotrexate therapy: case report and review of the literature. Pharmacotherapy. 2005;25(9):1271–1276. doi: 10.1592/phco.2005.25.9.1271.
  • Kosakai Y, Horie T, Awazu S. Protective effect of vitamin a against the methotrexate-induced damage to small intestine: a study on the crypt cells. Pharmacol Toxicol. 1991;69(4):291–295. doi: 10.1111/bcpt.1991.69.4.291.
  • Jolivet J, Cowan KH, Curt GA, et al. The pharmacology and clinical use of methotrexate. N Engl J Med. 1983;309(18):1094–1104. doi: 10.1056/NEJM198311033091805.
  • Gupta S, Sharma B. Protective effects of phosphodiesterase-1 (PDE1) and ATP sensitive potassium (KATP) channel modulators against 3-nitropropionic acid induced behavioral and biochemical toxicities in experimental Huntington׳s disease. Eur J Pharmacol. 2014;732:111–122. doi: 10.1016/j.ejphar.2014.03.032.
  • Abdelzaher WY, Ahmed SM, Welson NN, et al. Vinpocetine ameliorates L-arginine induced acute pancreatitis via Sirt1/Nrf2/TNF pathway and inhibition of oxidative stress, inflammation, and apoptosis. Biomed Pharmacother. 2021;133:110976. doi: 10.1016/j.biopha.2020.110976.
  • Abdel-Salam OM, Khadrawy YA, Salem NA, et al. Oxidative stress in a model of toxic demyelination in rat brain: the effect of piracetam and vinpocetine. Neurochem Res. 2011;36(6):1062–1072. doi: 10.1007/s11064-011-0450-1.
  • Zhang W, Huang Y, Li Y, et al. Efficacy and safety of vinpocetine as part of treatment for acute cerebral infarction: a randomized, Open-Label, controlled, multicenter CAVIN (Chinese Assessment for Vinpocetine In Neurology) trial. Clin Drug Investig. 2016;36(9):697–704. doi: 10.1007/s40261-016-0415-x.
  • Gressier B, Lebegue S, Brunet C, et al. Pro-oxidant properties of methotrexate: evaluation and prevention by an anti-oxidant drug. Pharmazie. 1994;49(9):679–681.
  • AlBasher G, AlKahtane AA, Alarifi S, et al. Methotrexate-induced apoptosis in human ovarian adenocarcinoma SKOV-3 cells via ROS-mediated bax/bcl-2-cyt-c release cascading. Onco Targets Ther. 2019;12:21–30. doi: 10.2147/OTT.S178510.
  • Kesik V, Uysal B, Kurt B, et al. Ozone ameliorates methotrexate-induced intestinal injury in rats. Cancer Biol Ther. 2009;8(17):1623–1628. doi: 10.4161/cbt.8.17.9203.
  • Kamel MY, Ahmed SM, Abdelzaher WY, et al. Role of IL-6/STAT3 pathway in mediating the protective effect of agomelatine against methotrexate-induced lung/intestinal tissues damage in rats. Immunopharmacol Immunotoxicol. 2022;44(1):35–46. doi: 10.1080/08923973.2021.1999973.
  • Boybeyi Ö, Gunal YD, Atasoy P, et al. The effect of colchicine and low-dose methotrexate on intestinal ischemia/reperfusion injury in an experimental model. J Pediatr Surg. 2014;49(10):1471–1474. doi: 10.1016/j.jpedsurg.2014.01.057.
  • Kavram Sarihan K, Yardimoğlu Yilmaz M, Eraldemir FC, et al. Protective effects of apocynin on damaged testes of rats exposed to methotrexate. Turk J Med Sci. 2020;50(5):1409–1420. doi: 10.3906/sag-1909-52.
  • Abd El-Ghafar OAM, Hassanein EHM, Ali FEM, et al. Hepatoprotective effect of acetovanillone against methotrexate hepatotoxicity: role of keap-1/Nrf2/ARE, IL6/STAT-3, and NF-κB/AP-1 signaling pathways. Phytother Res. 2022;36(1):488–505. doi: 10.1002/ptr.7355.
  • Hassanein EHM, Shalkami AS, Khalaf MM, et al. The impact of Keap1/Nrf2, P(38)MAPK/NF-κB and bax/Bcl2/caspase-3 signaling pathways in the protective effects of berberine against methotrexate-induced nephrotoxicity. Biomed Pharmacother. 2019;109:47–56. doi: 10.1016/j.biopha.2018.10.088.
  • Sayed AM, Hassanein EHM, Ali FEM, et al. Regulation of keap-1/Nrf2/AKT and iNOS/NF-κB/TLR4 signals by apocynin abrogated methotrexate-induced testicular toxicity: mechanistic insights and computational pharmacological analysis. Life Sci. 2021;284:119911. doi: 10.1016/j.lfs.2021.119911.
  • Grisham MB, Benoit JN, Granger DN. Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods Enzymol. 1990;186:729–742.
  • Petschow BW, Carter DL, Hutton GD. Influence of orally administered epidermal growth factor on normal and damaged intestinal mucosa in rats. J Pediatr Gastroenterol Nutr. 1993;17(1):49–58. doi: 10.1097/00005176-199307000-00007.
  • Leitão RF, Brito GA, Oriá RB, et al. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents. BMC Gastroenterol. 2011;11:90. doi: 10.1186/1471-230X-11-90.
  • Colombo BB, Fattori V, Guazelli CFS, et al. Vinpocetine ameliorates acetic acid-induced colitis by inhibiting NF-κB activation in mice. Inflammation. 2018;41(4):1276–1289. doi: 10.1007/s10753-018-0776-9.
  • Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993;7(2):349–360. doi: 10.1096/fasebj.7.2.8440411.
  • Machida M, Machida T, Kikuchi M, et al. Methotrexate mediates the integrity of intestinal stem cells partly through nitric oxide-dependent wnt/β-catenin signaling in methotrexate-induced rat ileal mucositis. J Pharmacol Sci. 2022;148(3):281–285. doi: 10.1016/j.jphs.2022.01.002.
  • Baldwin ASJr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–683. doi: 10.1146/annurev.immunol.14.1.649.
  • Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci. 2004;29(2):72–79. doi: 10.1016/j.tibs.2003.12.003.
  • Banerjee S, Biehl A, Gadina M, et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77(5):521–546. doi: 10.1007/s40265-017-0701-9.
  • Bode JG, Albrecht U, Häussinger D, et al. Hepatic acute phase proteins–regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol. 2012;91(6–7):496–505. doi: 10.1016/j.ejcb.2011.09.008.
  • Nilsen NJ, Vladimer GI, Stenvik J, et al. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J Biol Chem. 2015;290(6):3209–3222. doi: 10.1074/jbc.M114.593426.
  • Abdel-Wahab BA, Ali FEM, Alkahtani SA, et al. Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: role of Nrf2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/bax/bcl-2 signaling pathways. Immunopharmacol Immunotoxicol. 2020;42(5):493–503. doi: 10.1080/08923973.2020.1811307.
  • Abo-Haded HM, Elkablawy MA, Al-Johani Z, et al. Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLOS One. 2017;12(3):e0174295. doi: 10.1371/journal.pone.0174295.
  • Ben-Lulu S, Pollak Y, Mogilner J, et al. Dietary transforming growth factor-beta 2 (TGF-β2) supplementation reduces methotrexate-induced intestinal mucosal injury in a rat. PLOS One. 2012;7(9):e45221. doi: 10.1371/journal.pone.0045221.
  • Fattori V, Borghi SM, Guazelli CFS, et al. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice. Pharmacol Res. 2017;120:10–22. doi: 10.1016/j.phrs.2016.12.039.
  • Huang EW, Xue SJ, Zhang Z, et al. Vinpocetine inhibits breast cancer cells growth in vitro and in vivo. Apoptosis. 2012;17(10):1120–1130. doi: 10.1007/s10495-012-0743-0.
  • Kim NJ, Baek JH, Lee J, et al. A PDE1 inhibitor reduces adipogenesis in mice via regulation of lipolysis and adipogenic cell signaling. Exp Mol Med. 2019;51(1):1–15. doi: 10.1038/s12276-018-0198-7.
  • Newton K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol. 2015;25(6):347–353. doi: 10.1016/j.tcb.2015.01.001.
  • de Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol. 2015;39:56–62. doi: 10.1016/j.semcdb.2015.02.002.
  • Kim YS, Morgan MJ, Choksi S, et al. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell. 2007;26(5):675–687. doi: 10.1016/j.molcel.2007.04.021.
  • Kim S, Lee H, Lim JW, et al. Astaxanthin induces NADPH oxidase activation and receptor‑interacting protein kinase 1‑mediated necroptosis in gastric cancer AGS cells. Mol Med Rep. 2021;24(6)doi: 10.3892/mmr.2021.12477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.