69
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Macrophages morphology and cytokine reeducation by ex situ copper thiol complexes

, , , , &
Pages 20-32 | Received 31 Oct 2022, Accepted 02 Aug 2023, Published online: 16 Aug 2023

References

  • Orekhov AN, Orekhova VA, Nikiforov NG, et al. Monocyte differentiation and macrophage polarization. Vessel Plus. 2019;2019:10. doi: 10.20517/2574-1209.2019.04.
  • Tufet M. Re-educating macrophages. Nat Rev Immunol. 2008;8(7):488–488. doi: 10.1038/nri2365.
  • Hagemann T, Lawrence T, McNeish I, et al. Re-educating tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008;205(6):1261–1268. doi: 10.1084/jem.20080108.
  • Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11(8):677–689. doi: 10.2217/imt-2018-0156.
  • Chistiakov DA, Myasoedova VA, Revin VV, et al. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018;223(1):101–111. doi: 10.1016/j.imbio.2017.10.005.
  • Huang X, Li Y, Fu M, et al. Polarizing macrophages in vitro. Methods Mol Biol. 2018;1784:119–126.
  • Chen W, Sandoval H, Kubiak JZ, et al. The phenotype of peritoneal mouse macrophages depends on the mitochondria and ATP/ADP homeostasis. Cell Immunol. 2018;324:1–7. doi: 10.1016/j.cellimm.2017.11.003.
  • Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995. doi: 10.3390/ijms22136995.
  • Li C, Levin M, Kaplan DL. Bioelectric modulation of macrophage polarization. Sci Rep. 2016;6:21044. doi: 10.1038/srep21044.
  • Ferraro B, Leoni G, Hinkel R, et al. Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol. 2019;73(23):2990–3002. doi: 10.1016/j.jacc.2019.03.503.
  • Bevan L, Lim ZW, Venkatesh B, et al. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc Res. 2020;116(7):1357–1371. doi: 10.1093/cvr/cvz221.
  • Sarkar B, Lingertat-Walsh K, Clarke JT. Copper-histidine therapy for menkes disease. J Pediatr. 1993;123(5):828–830. doi: 10.1016/S0022-3476(05)80870-4.
  • Guthrie LM, Soma S, Yuan S, et al. Elesclomol alleviates menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science. 2020;368(6491):620–625. doi: 10.1126/science.aaz8899.
  • Stremmel W, Weiskirchen R. Therapeutic strategies in wilson disease: pathophysiology and mode of action. Ann Transl Med. 2021;9(8):732. doi: 10.21037/atm-20-3090.
  • Zapata-Catzin GA, Zumbardo-Bacelis GA, Vargas-Coronado R, et al. Novel copper complexes-polyurethane composites that mimics anti-inflammatory response. J Biomater Sci Polym Ed. 2023;34(8):1067–1089. doi: 10.1080/09205063.2022.2155783.
  • Climova A, Pivovarova E, Szczesio M, et al. Anticancer and antimicrobial activity of new copper (II) complexes. J Inorg Biochem. 2023;240:112108. doi: 10.1016/j.jinorgbio.2022.112108.
  • Patteson JB, Putz AT, Tao L, et al. Biosynthesis of fluopsin C, a copper-containing antibiotic from. Science. 2021;374(6570):1005–1009. doi: 10.1126/science.abj6749.
  • Ji P, Wang P, Chen H, et al. Potential of copper and copper compounds for anticancer applications. Pharmaceuticals. 2023;16(2):234. doi: 10.3390/ph16020234.
  • Xiong C, Ling H, Hao Q, et al. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ. 2023;30(4):876–884. doi: 10.1038/s41418-023-01125-0.
  • Xool-Tamayo J, Castillo-Cruz O, Vargas-Coronado RF, et al. Non inflammatory properties of ex situ thiol-based copper chelates. Mater Lett. 2021;282:128657. doi: 10.1016/j.matlet.2020.128657.
  • Xool-Tamayo J, Chan-Zapata I, Arana-Argaez VE, et al. In vitro and in vivo anti-inflammatory properties of mayan propolis. Eur J Inflamm. 2020;18:205873922093528. 2058739220935280. doi: 10.1177/2058739220935280.
  • Davies JQ, Gordon S. Isolation and culture of human macrophages. Methods Mol Biol. 2005;290:105–116. doi: 10.1385/1-59259-838-2:105.
  • Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp. 2010;28(35):1488.
  • Pineda-Torra I, Gage M, de Juan A, et al. Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages. Methods Mol Biol. 2015;1339:101–109.
  • Arana-Argáez VE, Chan-Zapata I, Canul-Canche J, et al. Immunosuppresive effects of the methanolic extract of chrysophyllum cainito leaves on macrophage functions. Afr J Tradit Complement Altern Med. 2017;14(1):179–186.
  • Spiller KL, Koh TJ. Macrophage-based therapeutic strategies in regenerative medicine. Adv Drug Deliv Rev. 2017;122:74–83. doi: 10.1016/j.addr.2017.05.010.
  • Ma Y, Yang H, Zong X, et al. Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics. Biomaterials. 2021;274:120865. doi: 10.1016/j.biomaterials.2021.120865.
  • Villar-Fincheira P, Sanhueza-Olivares F, Norambuena-Soto I, et al. Role of interleukin-6 in vascular health and disease. Front Mol Biosci. 2021;8:641734. doi: 10.3389/fmolb.2021.641734.
  • Casella G, Garzetti L, Gatta AT, et al. IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. J Neuroinflammation. 2016;13(1):139. doi: 10.1186/s12974-016-0596-5.
  • Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and m3 macrophage “switch” phenotype. Biomed Res Int. 2015;2015:341308. doi: 10.1155/2015/341308.
  • Kalish S, Lyamina S, Manukhina E, et al. M3 macrophages stop division of tumor cells in vitro and extend survival of mice with ehrlich ascites carcinoma. Med Sci Monit Basic Res. 2017;23:8–19. doi: 10.12659/msmbr.902285.
  • Pérez S, Rius-Pérez S. Macrophage polarization and reprogramming in acute inflammation: a redox perspective. Antioxidants. 2022;11(7):1394. doi: 10.3390/antiox11071394.
  • Solier S, Müller S, Cañeque T, et al. A druggable copper-signalling pathway that drives inflammation. Nature. 2023;617(7960):386–394. doi: 10.1038/s41586-023-06017-4.
  • Chen W, Zhang F, Ju Y, et al. Gold nanomaterial engineering for macrophage-mediated inflammation and tumor treatment. Adv Healthc Mater. 2021;10(5):e2000818. doi: 10.1002/adhm.202000818.
  • Ni C, Zhou J, Kong N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials. 2019;206:115–132. doi: 10.1016/j.biomaterials.2019.03.039.
  • Smith TD, Tse MJ, Read EL, et al. Regulation of macrophage polarization and plasticity by complex activation signals. Integr Biol. 2016;8(9):946–955. doi: 10.1039/c6ib00105j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.