129
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design of novel PLK4 inhibitors as TRIM37-amplified breast cancer drugs using 3D-QSAR, molecular docking, and molecular dynamics simulation methods

&
Pages 571-587 | Received 15 Jan 2024, Accepted 08 Mar 2024, Published online: 04 Apr 2024

References

  • Britt KL, Cuzick J, Phillips K-A. Key steps for effective breast cancer prevention. Nat Rev Cancer. 2020;20:417–436. doi:10.1038/s41568-020-0266-x
  • El Mchichi L, Tabti K, Kasmi R, et al. 3D-QSAR study, docking molecular and simulation dynamic on series of benzimidazole derivatives as anti-cancer agents. J Indian Chem Soc. 2022;99:100582. doi:10.1016/j.jics.2022.100582
  • Archambault V, Lépine G, Kachaner D. Understanding the polo kinase machine. Oncogene. 2015;34:4799–4807. doi:10.1038/onc.2014.451
  • Yamamoto S, Kitagawa D. Emerging insights into symmetry breaking in centriole duplication: updated view on centriole duplication theory. Curr Opin Struct Biol. 2021;66:8–14. doi:10.1016/j.sbi.2020.08.005
  • Raab CA, Raab M, Becker S, et al. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer. 2021;1875:188467. doi:10.1016/j.bbcan.2020.188467
  • Zhang XY, Wei C, Liang H, et al. Polo-like kinase 4’s critical role in cancer development and strategies for Plk4-targeted therapy. Front Oncol. 2021;11:587554. doi:10.3389/fonc.2021.587554
  • Maniswami RR, Prashanth S, Karanth AV, et al. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets. 2017;22:59–73. doi:10.1080/14728222.2018.1410140
  • Li Z, Dai K, Wang C, et al. Expression of Polo-Like Kinase 4(PLK4) in breast cancer and its response to taxane-based neoadjuvant chemotherapy. J Cancer. 2016;7:1125–1132. doi:10.7150/jca.14307
  • Meitinger F, Ohta M, Lee K-Y, et al. TRIM37 controls cancer-specific vulnerability to PLK4 inhibition. Nature. 2020;585:440–446. doi:10.1038/s41586-020-2710-1.
  • Yeow ZY, Lambrus BG, Marlow R, et al. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature. 2020;585:447–452. doi:10.1038/s41586-020-2690-1
  • Wang W, Xia Z-J, Farré J-C, et al. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843–2858. doi:10.1083/jcb.201611170
  • Mason JM, Lin DC-C, Wei X, et al. Functional characterization of CFI-400945, a polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell. 2014;26:163–176. doi:10.1016/j.ccr.2014.05.006
  • Parsyan A, Cruickshank J, Hodgson K, et al. Anticancer effects of radiation therapy combined with Polo-Like Kinase 4 (PLK4) inhibitor CFI-400945 in triple negative breast cancer. The Breast. 2021;58:6–9. doi:10.1016/j.breast.2021.03.011
  • Kawakami M, Mustachio LM, Zheng L, et al. Polo-like kinase 4 inhibition produces polyploidy and apoptotic death of lung cancers. Proc Natl Acad Sci USA. 2018;115:1913–1918. doi:10.1073/pnas.1719760115
  • Veitch ZW, Cescon DW, Denny T, et al. Safety and tolerability of CFI-400945, a first-in-class, selective PLK4 inhibitor in advanced solid tumours: a phase 1 dose-escalation trial. Br J Cancer. 2019;121:318–324. doi:10.1038/s41416-019-0517-3
  • Treiger Sredni S, Bailey AW, Suri A, et al. Inhibition of polo-like kinase 4 (PLK4): a new therapeutic option for rhabdoid tumors and pediatric medulloblastoma. Oncotarget. 2017;8:111190–111212. doi:10.18632/oncotarget.22704
  • Lohse I, Mason J, Cao PM, et al. Activity of the novel polo-like kinase 4 inhibitor CFI-400945 in pancreatic cancer patient-derived xenografts. Oncotarget. 2016;8:3064–3071. doi:10.18632/oncotarget.13619
  • Suri A, Bailey AW, Tavares MT, et al. Evaluation of protein kinase inhibitors with plk4 cross-over potential in a pre-clinical model of cancer. Int J Mol Sci. 2019;20:2112. doi:10.3390/ijms20092112
  • Sun Y, Xue Y, Sun P, et al. Discovery of the first potent, selective, and in vivo efficacious polo-like kinase 4 proteolysis targeting chimera degrader for the treatment of TRIM37-amplified breast cancer. J Med Chem. 2023;66:8200–8221. doi:10.1021/acs.jmedchem.3c00505
  • Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988;110:5959–5967. doi:10.1021/ja00226a005
  • Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37:4130–4146. doi:10.1021/jm00050a010
  • Huang S, Feng K, Ren Y. Molecular modelling studies of quinazolinone derivatives as MMP-13 inhibitors by QSAR, molecular docking and molecular dynamics simulations techniques†. RSC Med Chem. 2018;10:101–115. doi:10.1039/c8md00375k
  • Sun Y, Sun Y, Wang L, et al. Design, synthesis, and biological evaluation of novel pyrazolo [3,4-d]pyrimidine derivatives as potent PLK4 inhibitors for the treatment of TRIM37-amplified breast cancer. Eur J Med Chem. 2022;238:114424. doi:10.1016/j.ejmech.2022.114424
  • Tong JB, Luo D, Bian S, et al. Structural investigation of tetrahydropteridin analogues as selective PLK1 inhibitors for treating cancer through combined QSAR techniques, molecular docking, and molecular dynamics simulations. J Mol Liq. 2021;335:116235. doi:10.1016/j.molliq.2021.116235
  • Vaz RJ. A QSPR for the Tg of polymers: The Koehler-Hopfinger approach using the tripos 5.2 force field. Macromol Symp. 1993;65:261–268. doi:10.1002/masy.19930650129
  • Bai F, Liu X, Li J, et al. Bioactive conformational generation of small molecules: a comparative analysis between force-field and multiple empirical criteria based methods. BMC Bioinf. 2010;11:545. doi:10.1186/1471-2105-11-545
  • Lu P, Wei X, Zhang R. CoMFA and CoMSIA 3D-QSAR studies on quionolone caroxylic acid derivatives inhibitors of HIV-1 integrase. Eur J Med Chem. 2010;45:3413–3419. doi:10.1016/j.ejmech.2010.04.030
  • Pandey G, Saxena AK. 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments. J Chem Inf Model. 2006;46:2579–2590. doi:10.1021/ci600224n
  • Yang H, Rudge DG, Koos JD, et al. Pavletich, mTOR kinase structure, mechanism and regulation. Nature. 2013;497:217–223. doi:10.1038/nature12122
  • Brito MAd, Rodrigues CR, Cirino JJV, et al. 3D-QSAR CoMFA of a series of DABO derivatives as HIV-1 reverse transcriptase non-nucleoside inhibitors. J Chem Inf Model. 2008;48:1706–1715. doi:10.1021/ci8001217
  • Sato A, Miyao T, Jasial S, et al. Comparing predictive ability of QSAR/QSPR models using 2D and 3D molecular representations. J Comput Aided Mol Des. 2021;35:179–193. doi:10.1007/s10822-020-00361-7
  • Sippl W. Development of biologically active compounds by combining 3D QSAR and structure-based design methods. J Comput Aided Mol Des. 2003;16:825–830. doi:10.1023/a:1023888813526
  • Guo Y, Xiao J, Guo Z, et al. Exploration of a binding mode of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg Med Chem. 2005;13:5424–5434. doi:10.1016/j.bmc.2005.05.016
  • Tahir A, Alharthy RD, Naseem S, et al. Investigations of structural requirements for BRD4 inhibitors through ligand- and structure-based 3D QSAR approaches. Molecules. 2018;23:1527. doi:10.3390/molecules23071527
  • Roy K. On some aspects of validation of predictive quantitative structure-activity relationship models. Expert Opin Drug Discov. 2007;2:1567–1577. doi:10.1517/17460441.2.12.1567
  • Ghosh S, Keretsu S, Cho SJ. Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR. PeerJ. 2021;9:e11951. doi:10.7717/peerj.11951
  • Rigsby RE, Parker AB. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem Mol Biol Educ. 2016;44:433–437. doi:10.1002/bmb.20966
  • Yuan S, Chan HCS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci. 2017;7:e1298. doi:10.1002/wcms.1298
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31:455–461. doi:10.1002/jcc.21334
  • Eberhardt J, Santos-Martins D, Tillack AF, et al. Autodock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021;61:3891–3898. doi:10.1021/acs.jcim.1c00203
  • Laskowski RA, Swindells MB. Ligplot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–2786. doi:10.1021/ci200227u.
  • Páll S, Zhmurov A, Bauer P, et al. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J Chem Phys. 2020;153:134110. doi:10.1063/5.0018516
  • Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi:10.1002/elps.1150181505
  • Isegawa M, Kato S. Polarizable force field for protein with charge response kernel. J Chem Theory Comput. 2009;5:2809–2821. doi:10.1021/ct900295u
  • Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2012;3:198–210. doi:10.1002/wcms.1121
  • Berk H, Carsten K, David van der S, et al. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447. doi:10.1021/ct700301q
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092. doi:10.1063/1.464397
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593. doi:10.1063/1.470117
  • Elliott D, Johnston BM, Johnston PR. The method of steepest descent for estimating quadrature errors. J Comput Appl Math. 2016;303:93–104. doi:10.1016/j.cam.2016.02.028
  • Qia K, Xiaoting G, Shouwei L, et al. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J Mol Liq. 2022;365:120116. doi:10.1016/j.molliq.2022.120116
  • Van Gunsteren WF, Berendsen HJC. A leap-frog algorithm for stochastic dynamics. Mol Simulat. 1988;1:173–185. doi:10.1080/08927028808080941
  • Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019;24:1157–1165. doi:10.1016/j.drudis.2019.03.015
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi:10.1038/srep42717
  • Guoli X, Zhenxing W, Jiacai Y, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49:W5–W14. doi:10.1093/nar/gkab255
  • Gomes RA, Genesi GL, Maltarollo VG, et al. Quantitative structure–activity relationships (HQSAR, CoMFA, and CoMSIA) studies for COX-2 selective inhibitors. J Biomol Struct Dyn. 2016;35:1436–1445. doi:10.1080/07391102.2016.1185379

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.