Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 19, 2007 - Issue 14
250
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Deposition of Inhaled Wood Dust in the Nasal Cavity

, &
Pages 1155-1165 | Received 20 Jun 2007, Accepted 08 Aug 2007, Published online: 06 Oct 2008

REFERENCES

  • ASHRAE. Ventilation and infiltration. ASHRAE handbook 2001, Fundamentals. American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA 2001, Chapter 26
  • Cheng K. H., Cheng Y. S., Yeh H. C., Guilmette R. A., Simpson S. Q., Yang Y. H., Swift D. L. In vivo measurements of nasal airway dimensions and ultrafine aerosol deposition in the human nasal and oral airways. Aerosol Sci. 1996; 27(5)785–801
  • Chung K. Y. K., Cuthber R. J., Revell G. S., Wassel S. G., Summer N. A study on dust emission, particle size distribution and formaldehyde concentration during machining of medium density fibreboard. Ann. Occup. Hyg. 2000; 44: 455–466
  • Croce C., Fodil R., Durand M., Sbirlea-Apiou G., Caillibotte G., Papon J.-F., Blondeau J.-R., Coste A., Isabey D., Louis B. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann. Biomed. Eng. 2006; 34(6)997–1007
  • Dai Y. T., Juang Y. J., Wu Y. Y., Breysse P. N., Hsu D. J. In vivo measaurements of inhalability of ultralarge aerosol particles in calm air by humans. J. Aerosol Sci. 2006; 37: 967–973
  • Enarson D. A., Chan-Yeung M. Characterization of health effects of wood dust exposures. Am. J. Ind. Med. 1990; 17: 33–38
  • Finck M., Hänel D., Wlokas I. Simulation of nasal flow by lattice Boltzmann methods. Comp. Biol. Med. 2007; 37: 739–749
  • FLUENT Inc. FLUENT 6.2 documentation, et al. FLUENT, Inc, Lebanon, NH 2005
  • Fry F. A., Black A. Regional deposition and clearance of particles in the human nose. Aerosol Sci. 1973; 4: 113–124
  • GAMBIT. GAMBIT 2.2 documentation, et al. FLUENT, Inc, Lebanon, NH 2004
  • Garcia G. J. M., Bailie N., Martins D. A., Kimbell J. S. Atrophic rhinitis: A CFD study of air conditioning in the nasal cavity. J. Appl. Physiol. 2007, doi:10.1152/japplphysiol.01118.2006
  • Guilmette R. A., Cheng Y. S., Yeh H. C., Swift D. L. Deposition of 0.005.12 μm monodisperse particles in a computer-milled, MRI-based nasal airway replica. Inhal. Toxicol. 1994; 6(Suppl. 1)395–399
  • Hadfield E. M. Damage to the human nasal mucosa by wood dust. Inhaled particles III, W. H. Walton. Unwin Bros, Old WorkingUK 1972; vol. II: 855–861
  • Hahn I., Schere P. W., Mozell M. M. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J. Appl. Physiol. 1993; 75: 2273–2287
  • Harper M., Muller B. S. An evaluation of total and inhalable samples for the collection of wood dust in three wood products industries. J. Environ. Monit. 2002; 4: 648–656
  • Häüss ermann S., Bailey A. G., Bailey M. R., Etherington G., Youngman M. The influence of breathing patterns on particle deposition in a nasal replica cast. J. Aerosol Sci. 2002; 33: 923–933
  • Heyder J., Rudolf G. Depostion of aerosol particles in the human nose. Inhaled particles IV, W. H. Walton. Pergamon Press, Oxford 1977; 107–125
  • Hounam R. F., Black A., Walsh M. Deposition of aerosol particles in the nasopharyngeal region of the human respiratory tract. J. Aerosol Sci. 1971; 2: 341–352
  • International Agency for Research on Cancer (IARC). Wood dust. IARC Monogr. Eval. Carcinogen. Risks Hum. 1995; 62: 35–215
  • International Agency for Research on Cancer/World Health Organization (IARC/WHO). Wood dust and formaldehyde. IARC Monogr. Eval. Carcinogen. Risks Hum. 1995; 62
  • Inthavong K., Tian Z. F., Li H. F., Tu J. T., Yang W., Xue C. L., Li C. G. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci. Tech. 2006; 40: 1034–1045
  • Keck T., Leiacker R., Klotz M., Lindemann J. Detection of particles within the nasal airways during respiration. Eur. Arch. Oto-Rhino-Larygol. 2000; 257: 493–497
  • Kelly J. T., Asgharian B., Kimbell J., Wong B. A. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles. Aerosol Sci. Technol. 2004; 38: 1072–1079
  • Keyhani K., Scherer P. W., Mozell M. M. Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. ASME 1995; 117: 429–441
  • Martonen T. B., Zhang Z., Yue G., Musante C. J. 3-D particle transport within the human upper respiratory tract. J. Aeros. Sci. 2002; 33: 1095–1110
  • Morsi S. A., Alexander A. J. Investigation of particle trajectories in 2-phase flow systems. J. Fluid Mech. 1972; 55: 193–208
  • Naftali S., Roenfeld M., Wolf M., Elad D. The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 2005; 33: 545–553
  • National Toxicology Program. Wood dust, Report on carcinogens11th ed. U.S. Department of Health and Human Services, Public Health Service, Washington, DC 2005
  • Pattle R. E. The retention of gases and particles in the human nose. Inhaled particles and vapors, C. N. Davies. Pergamon Press, Oxford, UK 1961; 302–309
  • Schroeter J. D., Kimbell J. S., Asgharian B. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model. J. Aerosol Med. 2006; 19: 301–313
  • Shi H. W., Kleinstreuer C., Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J. Aerosol Sci., 2007; 38: 398–419
  • Subramaniam R. P., Richardson R. B., Morgan K. T., Kimbell J. S. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 1998; 10: 91–120
  • Swift D. L. Inspiratory inertial deposition of aerosols in human nasal airway replicate casts: Implication for the proposed NCRR lung model. Radiat. Prot. Dosim. 1991; 38(1/3)29–34
  • Swift D. L., Proctor D. F. Access of air to the respiratory tract. Respiratory defence mechanism, J. D. Brain, D. F. Proctor, L. M. Reid. Marcel Dekker, New York 1977; 63–93
  • Tian Z. F., Tu J. Y., Yeoh G. H. Numerical simulation and validation of dilute gas-particle flow over a backward-facing step. Aerosol Sci. Technol. 2005; 39: 319–332
  • Wiesmiller K., Keck T., Leiacker R., Sikora T., Rettinger G., Lindemann J. The impact of expiration on particle deposition within the nasal cavity. Clin. Orthop. Relat. Res. 2003; 28: 304–307
  • Zamankhan P., Ahmadi G., Wang Z., Hopke P. K., Cheng Y. S., Su W. C., Leonard D. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Sci. Technol. 2006; 40: 463–476
  • Zhang Z., Kleinstreuer C., Kim C. S., Cheng Y. S. Vaporizing microdroplet inhalation, transport, and deposition in a human upper airway model. Aerosol Sci. Technol. 2004; 38: 36–49
  • Zwartz G. J., Guilmette R. A. Effect of flow rate on particle deposition in a replica of a human nasal airway. Inhal. Toxicol. 2001; 13: 109–127

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.