Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 29, 2017 - Issue 11
1,764
Views
18
CrossRef citations to date
0
Altmetric
Research Article

A 104-week pulmonary toxicity assessment of long and short single-wall carbon nanotubes after a single intratracheal instillation in rats

, , , , &
Pages 471-482 | Received 28 Jun 2017, Accepted 17 Oct 2017, Published online: 07 Nov 2017

References

  • Braakhuis HM, Park MV, Gosens I, et al. (2014). Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 11:18.
  • Costa DL, Lehmann JR, Winsett D, et al. (2006). Comparative pulmonary toxicological assessment of oil combustion particles following inhalation or instillation exposure. Toxicol Sci 91:237–46.
  • Donaldson K, Aiken R, Tran L, et al. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Appl Pharmacol 92:5–22.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. (2010). Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5.
  • Doudrick K, Corson N, Oberdörster G, et al. (2013). Extraction and quantification of carbon nanotubes in biological matrices with application to rat lung tissue. ACS Nano 7:8849–56.
  • Driscoll KE, Costa DL, Hatch G, et al. (2000). Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55:24–35.
  • Ema M, Masumori S, Kobayashi N, et al. (2013a). In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol 33:1053–60.
  • Ema M, Imamura T, Suzuki H, et al. (2013b). Genotoxicity evaluation for single-walled carbon nanotubes in a battery of in vitro and in vivo assays. J Appl Toxicol 33:933–9.
  • Ema M, Takehara H, Naya M, et al. (2017). Length effects of single-walled carbon nanotubes on pulmonary toxicity in rats. Regul Toxicol Pharmacol 42:367–78.
  • Fujita K, Fukuda M, Endoh S, et al. (2015b). Size effects of single-wall carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal Toxicol 27:207–23.
  • Fujita K, Fukuda M, Endoh S, et al. (2016). Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicol Lett 257:23–37.
  • Fujita K, Fukuda M, Fukui H, et al. (2015a). Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression. Nanotoxicology 9:290–301.
  • Grosse Y, Loomis D, Guyton KZ, International Agency for Research on Cancer Monograph Working Group, et al. (2014). Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol 15:1427–8.
  • Hamilton RF, Wu N, Porter D, et al. (2009). Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35.
  • Heinrich U, Fuhst R, Rittinghausen S, et al. (1995). Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black and titanium dixoide. Inhal Toxicol 7:533–56.
  • Hubbard R, Venn A, Lewis S, Britton J. (2000). Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am J Respir Crit Care Med 161:5–8.
  • Iijima S. (1991). Helical microtubules of graphitic carbon. Nature 354:56–8.
  • Jiménez AS, Brouwer D, Van Tongeren M. (2014). Workplace inhalation exposure to engineered nanomaterials. Detection, measurement, and assessment. In: Monteiro-Riviere NA, Tran CL (eds.) Nanotoxicology: progress toward nanomedicine. 2nd ed. Boca Raton, FL: CRC Press, 77–96.
  • Johnston HJ, Hutchison GR, Christensen FM, et al. (2010). A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–46.
  • Kasai T, Umeda Y, Ohnishi M, et al. (2016). Lung carcinogenicity of inhaled multi-walled carbon nanotubes in rats. Part Fibre Toxicol 13:53.
  • Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, et al. (2010). In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 4:1481–92.
  • Lam CY, James JT, McCluskey R, Hunter RL. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–34.
  • Liu Y, Zhao Y, Sun B, Chen C. (2013). Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–13.
  • Ma-Hock L, Treumann S, Strauss V, et al. (2009). Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–81.
  • Mercer RR, Scabilloni J, Wang L, et al. (2008). Alteration of deposition pattern and pulmonary responses as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294:L87–97.
  • METI (Ministry of Economy, Trade and Industry of Japan). (2016). Development of innovative methodology for safety assessment of industrial nanomaterials. Available from: https://metinanoen.aist-riss.jp/. [Last accessed: 18 Jan 2017].
  • Morimoto Y, Hirohashi M, Kobayashi N, et al. (2012a). Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology 6:766–75.
  • Morimoto Y, Hirohashi M, Horie M, et al. (2012b). Pulmonary toxicity of well-dispersed single-wall carbon nanotubes following intratracheal instillation. J Nano Res 18–19:9–25.
  • Morimoto Y, Izumi H, Yoshiura Y, et al. (2016). Usefulness of intratracheal instillation studies for estimating nanoparticle-induced pulmonary toxicity. Int J Mol Sci 17:165.
  • Muller J, Delos M, Panin N, et al. (2009). Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci 110:442–8.
  • Murphy FA, Schinwald A, Poland CA, Donaldson K. (2012). The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify proinflammatory responses in mesothelial cells. Part Fibre Toxicol 9:8.
  • Nagai H, Okazaki Y, Chew SH, et al. (2011). Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA 108:E1330–8.
  • Nagai H, Okazaki Y, Chew SH, et al. (2013). Intraperitoneal administration of tangled multiwalled carbon nanotubes of 15 nm in diameter does not induce mesothelial carcinogenesis in rats. Pathol Int 63:457–62.
  • Nakanishi J, Morimoto Y, Ogura I, et al. (2015). Risk assessment of the carbon nanotube group. Risk Anal 35:1940–56.
  • Naya M, Kobayashi N, Endoh S, et al. (2012). In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol 64:124–9.
  • Naya M, Kobayashi N, Mizuno K, et al. (2011). Evaluation of the genotoxic potential of single-walled carbon nanotubes by using a battery of in vitro and in vivo genotoxicity assays. Regul Toxicol Pharmacol 61:192–8.
  • NIOSH. (2013). Occupational exposure to carbon nanotubes and nanofibers, Current Intelligence Bulletin 65, DHHS (NIOSH) Publication No. 2013–145. April 2013.
  • Ohnishi M, Suzuki M, Yamamoto M, et al. (2016). Improved method for measurement of multi-walled carbon nanotubes in rat lung. J Occup Med Toxicol 11:44.
  • Poland CA, Duffin R, Kinloch I, et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–8.
  • Pauluhn J. (2010). Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–42.
  • Sakamoto Y, Nakae D, Fukumori N, et al. (2009). Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34:65–76.
  • Sargent LM, Porter DW, Staska LM, et al. (2014). Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 11:3.
  • Schinwald A, Murphy FA, Prina-Mello A, et al. (2012). The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci 128:461–70.
  • Shvedova AA, Kisin E, Murray AR, et al. (2008). Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295:L552–65.
  • Shvedova AA, Yanamala N, Kisin ER, et al. (2014). Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol 306:L170–82.
  • Suzui M, Futakuchi M, Fukamachi K, et al. (2016). Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci 107:924–35.
  • Takagi A, Hirose A, Futakuchi M, et al. (2012). Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci 103:1440–4.
  • Takagi A, Hirose A, Nishimura T, et al. (2008). Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotubes. J Toxicol Sci 33:105–16.
  • Thomas TA. (2014). Nanotechnology in consumer products: addressing potential health and safety implications for consumers. In: Monteiro-Riviere NA, Tran CL (eds.) Nanotoxicology: Progress toward Nanomedicine. 2nd ed. Boca Raton, FL: CRC Press, 97–112.
  • Wang Y, Okazaki Y, Shi L, et al. (2016). Role of hemoglobin and transferrin in multi-wall carbon nanotube-induced mesothelial injury and carcinogenesis. Cancer Sci 107:250–7.
  • Warheit DB, Laurence BR, Reed KL, et al. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–25.
  • Ye J, Shi X, Jones W, et al. (1999). Critical role of glass fiber length in TNF-alpha production and transcription factor activation in macrophages. Am J Physiol 276:L426–34.