Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 29, 2017 - Issue 12-14
388
Views
9
CrossRef citations to date
0
Altmetric
Review Article

A mechanistic review of particle overload by titanium dioxide

Pages 530-540 | Received 26 Nov 2017, Accepted 16 Jan 2018, Published online: 20 Feb 2018

References

  • Ajuebor M, Flower R, Hannon R, et al. (1998). Endogenous monocyte chemoattractant protein-1 recruits monocytes in zymosan peritonitis model. J Leukocyte Biol 63:108–16.
  • Al-Tikriti M, Khamas W, Henry R. (2012). Light microscopy of bronchial associated lymphoid tissue of healthy domestic cat with suggested new nomenclature. Anat Physiol 2:3. doi: 10.4172/2161-0940.1000104.
  • Andersson P, Lejon C, Ekstrand-Hammarström B, et al. (2011). Polymorph- and size-dependent uptake and toxicity of TiO2 nanoparticles in living lung epithelial cells. Small 7:514–23.
  • Arredouani M, Palecanda A, Koziel H, et al. (2005). MARCO is major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol 175:6058–64.
  • Bellmann B, Muhle H, Creutzenberg O, et al. (1991). Lung clearance and retention of toner, utilizing a tracer technique, during chronic inhalation exposure in rats. Fundam Appl Toxicol 17:300–13.
  • Bermudez E, Mangum J, Asgharian B, et al. (2002). Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 70:86–97.
  • Bermudez E, Mangum J, Wong B, et al. (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–757.
  • Bienenstock J, McDermott M. (2005). Bronchus- and nasal-associated lymphoid tissues. Immunol Rev 206:22–31.
  • Blank F, Rothen-Rutishauser B, Gehr P. (2007). Dendritic cells and macrophages form a trans-epithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol 36:669–77.
  • Blank F, Wehrli M, Lehmann A, et al. (2011). Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology 216:86–95.
  • Bowden D. (1984). The alveolar macrophage. Environ Health Perspect 55:327–41.
  • Brandes M, Finkelstein J. (1989). Stimulated rabbit alveolar macrophages secrete a growth factor for type II pneumocytes. Am J Respir Cell Mol Biol 1:101–9.
  • Cassel S, Eisenbarth S, Iyer S, et al. (2008). The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–40.
  • Cesta M. (2006). Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol 34:599–608.
  • Creutzenberg O, Bellmann B, Muhle H, Dasenbrock C. (1998). Lung clearance and retention of toner, TiO2, and crystalline silica, utilizing a tracer technique during chronic inhalation exposure in syrian golden hamsters. Inhal Toxicol 10:731–51.
  • Cullen R, Tran C, Buchanan D, et al. (2000). Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal Toxicol 12:1089–111.
  • Davies L, Jenkins S, Allen J, Taylor P. (2013). Tissue-resident macrophages. Nat Immunol 14:986–95.
  • De Filippo K, Henderson R, Laschinger M, Hogg N. (2008). Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol 180:4308–15.
  • Deshmane S, Kremlev S, Amini S, Sawaya B. (2009). Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–26.
  • Donaldson K, Brown G, Brown D, et al. (1990). Contrasting bronchoalveolar leukocyte responses in rats inhaling coal mine dust, quartz, or titanium dioxide: effects of coal rank, airborne mass concentration, and cessation of exposure. Environ Res 52:62–76.
  • Driscoll K, Lindenschmidt R, Maurer J, et al. (1990). Pulmonary response to silica or titanium dioxide: inflammatory cells, alveolar macrophage-derived cytokines, and histo-pathology. Am J Respir Cell Mol Biol 2:381–90.
  • Driscoll K, Hassenbein D, Carter J, et al. (1993). Macrophage inflammatory proteins 1 and 2: expression by rat alveolar macrophages, fibroblasts, and epithelial cells and in rat lung after mineral dust exposure. Am J Respir Cell Mol Biol 8:311–8.
  • Eydner M, Schaudien D, Creutzenberg O, et al. (2012). Impacts after inhalation of nano- and fine-sized titanium dioxide particles: morpho-logical changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index. Inhal Toxicol 24:557–69.
  • Ferin J. (1972). Observations concerning alveolar dust clearance. Ann NY Acad Sci 200:66–72.
  • Ferin J, Feldstein M. (1978). Pulmonary clearance and hilar lymph node content in rats after particle exposure. Environ Res 16:342–52.
  • Ferin J, Oberdörster G. (1985). Biological effects and toxicity assessment of titanium dioxides: anatase and rutile. Am Ind Hyg Assoc J 46:69–72.
  • Ferin J, Oberdörster G. (1992). Translocation of particles from pulmonary alveoli into the interstitium. J Aerosol Med 5:179–87.
  • Ferin J, Oberdörster G, Penney D. (1992). Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–42.
  • Fritsch P, Masse R. (1992). Overview of pulmonary alveolar macrophage renewal in normal rats and during different pathological processes. Environ Health Perspect 97:59–67.
  • Geiser T. (2003). Mechanisms of alveolar epithelial repair in acute lung injury-a translational approach. Swiss Med Wkly 133:586–90.
  • Geiser M, Rothen-Rutishauser B, Kapp N, et al. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–60.
  • Geiser M. (2010). Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23:207–17.
  • Hamilton R, Pfau J, Marshall G, Holian A. (2001). Silica and PM1648 modify human alveolar macrophage antigen-presenting cell activity in vitro. J Environ Pathol Toxicol Oncol 20:75–84.
  • Hamilton T, Zhao C, Pavicic P, Datta S. (2014). Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol 5:554. doi: 10.3389/fimmu.2014.00554.
  • Han S, Newsome B, Hennig B. (2013). Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells. Toxicology 306:1–8.
  • IARC (International Agency for Research on Cancer). (2010). IARC monographs on evaluation of carcinogenic risks to humans: carbon black, titanium dioxide, and talc. Vol. 93. Lyon, France: World Health Organization.
  • Jakubzick C, Tacke F, Llodra J, et al. (2006). Modulation of dendritic cell trafficking to and from the airways. J Immunol 176:3578–84.
  • Jenkins S, Hume D. (2014). Homeostasis in the mononuclear phagocyte system. Trends Immunol 35:358–67.
  • Johansson A, Lundborg M, Sköld C, et al. (1997). Functional, morphological, and phenotypical differences between rat alveolar and interstitial macrophages. Am J Respir Cell Mol Biol 16:582–8.
  • Johnston H, Hutchison G, Christensen F, et al. (2009). Identification of mechanisms that drive the toxicity of TiO2 particulates: contribution of physicochemical characteristics. Part Fibre Toxicol 6:33. doi: 10.1186/1743-8977-6-33.
  • Kheradmand F, Folkesson H, Shum L, et al. (1994). Transforming growth factor enhances alveolar epithelial cell repair in a new in vitro model. Am J Physiol 267:L728–38.
  • Kirby A, Coles M, Kaye P. (2009). Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol 183:1983–9.
  • Kobzik L. (1995). Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol 155:367–76.
  • Kreyling W, Semmler-Behnke M, Takenaka S, Möller W. (2013). Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Acc Chem Res 46:714–22.
  • Landsman L, Jung S. (2007). Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 179:3488–94.
  • Lang R, Patel D, Morris J, et al. (2002). Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169:2253–63.
  • Lauweryns J, Baert J. (1977). Alveolar clearance and the role of the pulmonary lymphatics. Am Rev Respir Dis 115:625–83.
  • Le Y, Zhou Y, Iribarren P, Wang J. (2004). Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1:95–104.
  • Lee K, Trochimowicz H, Reinhardt C. (1985a). Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol 79:179–92.
  • Lee K, Trochimowicz H, Reinhardt C. (1985b). Transmigration of titanium dioxide (TiO2) particles in rats after inhalation exposure. Exp Mol Pathol 42:331–43.
  • Lee K, Henry N, Trochimowicz H, Reinhardt C. (1986). Pulmonary response to impaired lung clearance in rats following excessive TiO2 dust deposition. Environ Res 41:144–67.
  • Lee K, Kelly D. (1993). Translocation of particle-laden alveolar macrophages and intra-alveolar granuloma formation in rats exposed to Ludox colloidal amorphous silica by inhalation. Toxicology 77:205–22.
  • Lehnert B. (1992). Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ Health Perspect 97:17–146.
  • Lehnert B, Ortiz J, Steinkamp J, et al. (1992). Mechanisms underlying the “particle redistribution phenomenon”. J Aerosol Med 5:261–77.
  • Leslie C, McCormick-Shannon K, Shannon JM, et al. (1997). Heparin-binding EGF-like growth factor is a mitogen for rat alveolar type II cells. Am J Respir Cell Mol Biol 16:379–87.
  • Lukacs N, Strieter R, Elner V, et al. (1995). Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte: endothelial cell interactions . Blood 86:2767–73.
  • Määttä J, Majuri M, Luukkonen R, et al. (2005). Characterization of oak and birch dust-induced expression of cytokines and chemokines in mouse macrophage RAW 264.7 cells. Toxicol 215:25–36.
  • Ma-Hock L, Burkhardt S, Strauss V, et al. (2009). Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol 21:102–18.
  • Mantovani A, Sica A, Sozzani S, et al. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–86.
  • Martinez F, Gordon S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. doi: 10.12703/P6-13.
  • Melgarejo E, Medina M, Sánchez-Jiménez F, Urdiales J. (2009). Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol. 41:998–1001.
  • Misharin A, Scott Budinger G, Perlman H. (2011). The lung macrophage: a Jack of all trades. Am J Respir Crit Care Med 184:497–8.
  • Morrow P. (1988). Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol 10:369–84.
  • Morrow P. (1992). Dust overloading of the lungs: update and appraisal. Toxicol Appl Pharmacol 113:1–12.
  • Mosser D, Edwards J. (2008). Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–69.
  • Muhle H, Bellmann B, Creutzenberg O, et al. (1991). Pulmonary response to toner upon chronic inhalation exposure in rats. Fundam Appl Toxicol 17:280–99.
  • NIOSH (National Institute for Occupational Safety and Health). (2011). Current Intelligence Bulletin 63. Occupational exposure to titanium dioxide. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Ohio.
  • Oberdörster G, Ferin J, Lehnert B. (1994). Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–9.
  • Oberdörster G. (1995). Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol 21:123–35.
  • Oberdörster G, Cox C, Gelein R. (1997). Intratracheal instillation versus intratracheal-inhalation of tracer particles for measuring lung clearance function. Exp Lung Res 23:17–34.
  • Pabst R, Gehrke I. (1990). Is the bronchus-associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans? Am J Respir Cell Mol Biol 3:131–5.
  • Pajarinen J, Kouri V, Jämsen E, et al. (2013). The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater 9:9229–40.
  • Peters A, Veronesi B, Calderón-Garcidueñas L, et al. (2006). Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 3:13. doi: 10.1186/1743-8977-3-13.
  • Plesch B. (1982). Histology and immunohistochemistry of bronchus associated lymphoid tissue (BALT) in the rat. Adv Exp Med Biol 149:491–7.
  • Ryan R, Mineo-Kuhn M, Kramer C, Finkelstein J. (1994). Growth factors alter neonatal type II alveolar epithelial cell proliferation. Am J Physiol 266:L17–22.
  • Semmler M, Seitz J, Erbe F, et al. (2004). Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16:453–9.
  • Semmler-Behnke M, Takenaka S, Fertsch S, et al. (2007). Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 115:728–33.
  • Shi H, Magaye R, Castranova V, Zhao J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. doi: 10.1186/1743-8977-10-15.
  • Snipes M. (1989). Long-term retention and clearance of particles inhaled by mammalian species. Crit Rev Toxicol 20:175–211.
  • Takahashi M, Masuyama J, Ikeda U, et al. (1995). Induction of monocyte chemoattractant protein-1 synthesis in human monocytes during transendothelial migration in vitro. Circ Res 76:750–7.
  • Takenaka S, Dornhöfer-Takenaka H, Muhle H. (1985). Alveolar distribution of fly ash and of titanium dioxide after long-term inhalation by Wistar rats. J Aerosol Sci 17:361–4.
  • Thakur S, Hamilton R, Pikkarainen T, Holian A. (2009). Differential binding of inorganic particles to MARCO. Toxicol Sci 107:238–46.
  • Tran C, Buchanan D, Cullen R, et al. (2000). Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12:1113–26.
  • Vincent J, Jones A, Johnston A, et al. (1987). Accumulation of inhaled mineral dust in the lung and associated lymph nodes: Implications for exposure and dose in occupational lung disease. Ann Occup Hyg 31:375–93.
  • Warheit D, Hansen J, Yuen I, et al. (1997). Inhalation of high concentra-tions of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. Toxicol Appl Pharmacol 145:10–22.
  • Warheit D, Kreiling R, Levy L. (2016). Relevance of the rat lung tumor response to particle overload for human risk assessment-Update and interpretation of new data since ILSI 2000. Toxicology 374:42–59.
  • Wolpe S, Sherry B, Juers D, et al. (1989). Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci USA 86:612–6.
  • Xu J, Futakuchi M, Iigo M, et al. (2010). Involvement of macrophage inflammatory protein 1alpha (MIP1alpha) in promotion of rat lung and mammary carcinogenic activity of nanoscale titanium dioxide particles administered by intra-pulmonary spraying. Carcinogenesis 31:927–35.
  • Yona S, Kim K, Wolf Y, et al. (2013). Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis . Immunity 38:79–91.
  • Yu R, Rappaport S. (1996). Relation between pulmonary clearance and particle burden: a michaelis-menten-like kinetic model. Occup Environ Med 53:567–72.
  • Yu R, Rappaport S. (1997). A lung retention model based on Michaelis-Menten-like kinetics. Environ Health Perspect 105:496–503.
  • Zlotnik A, Yoshie O. (2000). Chemokines: a new classification system and their role in immunity. Immunity 12:121–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.