Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 30, 2018 - Issue 7-8
1,682
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Assessing the bioactivity of crystalline silica in heated high-temperature insulation wools

, , , , ORCID Icon, & show all
Pages 255-272 | Received 16 Nov 2017, Accepted 15 Aug 2018, Published online: 17 Oct 2018

References

  • Albrecht C, Knaapen AM, Becker A, et al., (2005). The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Resp Res 6:129.
  • Alexander IC, Brown RC, Jubb GA, et al., (1994). Durability of ceramic and novel man-made mineral fibers. Environ Health Pers 102:67–71.
  • Appay V, Rowland-Jones SL. (2001). RANTES: a versatile and controversial chemokine. Trends Immunol 22:83–7.
  • Barlow PG, Clouter-Baker A, Donaldson K, et al., 2005. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Particle Fibre Toxicol. 2:11.
  • Bauer M, Gräbsch C, Gminski R, et al., (2012). Cement-related particles interact with proinflammatory IL-8 chemokine from human primary oropharyngeal mucosa cells and human epithelial lung cancer cell line A549. Environ Toxicol 27:297–306.
  • Bellmann B, Muhle H, Pohlmann G, et al., (2002). Subchronic studies on man-made vitreous fibres: kinetics of inhaled particles. Ann Occup Hygiene 46:166–9.
  • Bellmann B, Schaeffer HA, Muhle H. (2010). Impact of variations in the chemical composition of vitreous mineral fibers on biopersistence in rat lungs and consequences for regulation. Inhal Toxicol 22:817–27.
  • Bernstein D, Castranova V, Donaldson K, et al., (2005). Testing of fibrous particles: short-term assays and strategies. Inhal Toxicol 7:497–537.
  • Bernstein D, Morscheidt C, Grimm H-G, et al., (1996). Evaluation of soluble fibers using the inhalation biopersistence model, a nine-fiber comparison. Inhalat Toxicol 8:345–85.
  • BeruBe K, Aufderheide M, Breheny D, et al., 2009. In vitro models of inhalation toxicity and disease. The report of a FRAME workshop. Alternatives to laboratory animals: ATLA. 37:89-141.
  • Boffetta P, Donaldson K, Moolgavkar S, Mandel J. (2014). A systematic review of occupational exposure to synthetic vitreous fibers and mesothelioma. Crit Rev Toxicol 44:436–49.
  • Borm PJA, Tran L, Donaldson K. (2011). The carcinogenic action of crystalline silica: a review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism. Crit Rev Toxicol 41:756–70.
  • Boyles MSP, Young L, Brown DM, et al., (2015). Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol In Vitro 29:1513–28.
  • Breznan D, Das DD, O’Brien JS, et al., (2017). Differential cytotoxic and inflammatory potency of amorphous silicon dioxide nanoparticles of similar size in multiple cell lines. Nanotoxicology 11:223–35.
  • Brody AR, Roe MW, Evans JN, Davis GS. (1982). Deposition and translocation of inhaled silica in rats. Quantification of particle distribution, macrophage participation, and function. Laboratory investigation. J Tech Methods Pathol 7:533–42.
  • Brown RC, Bellmann B, Muhle H, et al., (2002). Subchronic studies on man-made vitreous fibres: toxicity results. Ann Occup Hygiene 46:102–4.
  • Brown GM, Donaldson K, Brown DM. (1989). Bronchoalveolar leukocyte response in experimental silicosis: Modulation by a soluble aluminum compound. Toxicol Appl Pharmacol 101:95–105.
  • Brown RC, Harrison PTC. (2012). Alkaline earth silicate wools – A new generation of high temperature insulation. Regul Toxicol Pharmacol 64:296–304.
  • Brown TP, Harrison PTC. (2014). Crystalline silica in heated man-made vitreous fibres: A review. Regul. Toxicol. Pharmacol 68:152–9.
  • Brown DM, Wilson MR, MacNee W, et al., (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–9.
  • Cakmak GD, Schins RP, Shi T, et al., (2004). In vitro genotoxicity assessment of commercial quartz flours in comparison to standard DQ12 quartz. Int J Hygiene Environ Health 207:105–13.
  • Campopiano A, Cannizzaro A, Angelosanto F, et al., (2014). Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers. Regul Toxicol Pharmacol 70:393–406.
  • Chiazze LJ, Watkins DK, Fryar C. (1997). Historical cohort mortality study of a continuous filament fiberglass manufacturing plant: I white men. J Occup Environ Med 39:432–41.
  • Clouter A, Brown D, Höhr D, et al., (2001). Inflammatory effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates. Toxicol Sci 63:90–8.
  • Comodi P, Cera F, Gatta GD, et al., (2010). The devitrification of artificial fibers: a multimethodic approach to quantify the temperature–time onset of cancerogenic crystalline phases. Ann Occup Hygiene. 54:893–903.
  • Connolly M, Fernandez-Cruz M-L, Quesada-Garcia A, et al., (2015). Comparative cytotoxicity study of silver nanoparticles (AgNPs) in a variety of rainbow trout cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes. Int J Environ Res Public Health 12:5386.
  • Cullen RT, Miller BG, Davis JM, et al., (1997). Short-term inhalation and in vitro tests as predictors of fiber pathogenicity. Environ Health Perspect 105:1235–40.
  • De Filippo K, Dudeck A, Hasenberg M, et al., (2013). Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121:4930–7.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. (2010). Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle Fibre Toxicol 7:5.
  • Donaldson K, Poland CA, Murphy FA, et al., (2013). Pulmonary toxicity of carbon nanotubes and asbestos — Similarities and differences. Adv Drug Deliv Rev 65:2078–86.
  • Driscoll KE. (2000). TNFα and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol Lett 112–113:177–83.
  • Driscoll KE, Carter JM, Hassenbein DG, Howard B. (1997). Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 105:1159–64.
  • Driscoll KE, Howard BW, Carter JM, et al., (1996). Alpha-quartz-induced chemokine expression by rat lung epithelial cells: effects of in vivo and in vitro particle exposure. Am J Pathol 149:1627–37.
  • Duffin R, Gilmour PS, Schins RPF, et al., (2001). Aluminium lactate treatment of DQ12 quartz inhibits its ability to cause inflammation, chemokine expression, and nuclear factor-κB activation. Toxicol Appl Pharmacol. 176:10-17.
  • Dutta D, Moudgil BM. (2007). Crystalline silica particles mediated lung injury. KONA Powder Particle J 25:76–87.
  • ECFIA. 2014. Crystalline silica in High Temperature Insulation Wool (HTIW) products after use in high temperature applications. Available from: http://wwwecfiaeu/files/ECFIA-Action-Crystalline_Silica-v2_0-2014-10pdf [Accessed 13 November 2017].
  • Ernst H, Rittinghausen S, Bartsch W, et al., (2002). Pulmonary inflammation in rats after intratracheal instillation of quartz, amorphous SiO2, carbon black, and coal dust and the influence of poly-2-vinylpyridine-N-oxide (PVNO). Exp Toxicol Pathol 54:109–26.
  • Fanizza C, Ursini CL, Paba E, et al., (2007). Cytotoxicity and DNA-damage in human lung epithelial cells exposed to respirable alpha-quartz. Toxicol In Vitro Int J 21:586–94.
  • Foucaud L, Wilson MR, Brown DM, Stone V. (2007). Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 74:1–9.
  • Gamble JL. 1967. Chemical anatomy, physiology and pathology of extracellular fluid: a lecture syllabus. Cambridge, MA: Harvard University Press.
  • Ganz R, Krönert W. (1982). Crystallisation behaviour of high temperature ceramic fibres of the Al2O3-SiO2 system. Interceram 31:136–44.
  • Geiser M, Casaulta M, Kupferschmid B, et al., (2008). The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Resp Cell Molecul Biol. 38:371–6.
  • Guha N, Straif K, Benbrahim-Tallaa L. (2011). The IARC monographs on the carcinogenicity of crystalline silica. Med Lav 2:310–20.
  • Hamilton RF, Wu N, Porter D, et al., (2009). Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Particle Fibre Toxicol 6:35.
  • Harrison PTC, Brown RC. (2011). Devitrification of artificial fibres. Ann Occup Hyg 55:823–4.
  • Hart GA, Newman MM, Bunn WB, Hesterberg TW. (1992). Cytotoxicity of refractory ceramic fibres to Chinese hamster ovary cells in culture. Toxicol In Vitro 6:317–26.
  • Hesterberg TW, Hart GA, Chevalier J, et al., (1998). The importance of fiber biopersistence and lung dose in determining the chronic inhalation effects of X607, RCF1, and chrysotile asbestos in rats. Toxicol Appl Pharmacol 53:68–82.
  • Hefland RB, Schwarzel PE, Johansen BV, et al., (2001). Silica-induced cytokine release from A549 cells: importance of surface area versus size. Human Experi Toxicol 20:46–55.
  • IARC IAfRoC. 2002. Monographs on the Evaluation of Carcinogenic Risks to Humans. Man-made Vitreous Fibers. vol. 81.
  • IARC IAfRoC 2012. Monographs on the Evaluation of Carcinogenic Risks to Humans. Arsenic, Metals, Fibres and Dusts.vol. 100C.
  • Kokubo T, Ito S, Shigematsu M, et al., (1987). Fatigue and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite. J Mater Sci 22:4067–70.
  • Kolling A, Ernst H, Rittinghausen S, Heinrich U. (2011). Relationship of pulmonary toxicity and carcinogenicity of fine and ultrafine granular dusts in a rat bioassay. Inhalation Toxicol 23:544–54.
  • Kreyling WG. (1992). Intracellular particle dissolution in alveolar macrophages. Environ Health Perspect 97:121–6.
  • Lasfargues G, Lison D, Maldague P, Lauwerys R. (1992). Comparative study of the acute lung toxicity of pure cobalt powder and cobalt-tungsten carbide mixture in rat. Toxicol Appl Pharmacol 112:41–50.
  • Lieber M, Todaro G, Smith B, et al., (1976). A continuous tumor‐cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17:62–70.
  • Luoto K, Holopainen M, Sarataho M, Savolainen K. (1997). Comparison of cytotoxicity of man-made vitreous fibres. Ann Occup Hyg 41:37–50.
  • Maciejewska A. (2014). Health effects of occupational exposure to crystalline silica in the light of current research results. Med Pr 65:799–818.
  • Marques MRC, Loebenberg R, Almukainzi M. (2011). Simulated biological fluids with possible application in dissolution testing. Dissolution Technol 18:15–28.
  • Mast RW, McConnell EE, Anderson R, et al., (1995). Studies on the chronic toxicity (inhalation) of four types of refractory ceramic fiber in male Fischer 344 rats. Inhal Toxicol 7:425–67.
  • McCourt M, Wang J, Sookhai S, Redmond H. (1999). Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg 134:1325–31.
  • Meißner T, Kühnel D, Busch W, et al., (2010). Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations. Nanotoxicology 4:196–206.
  • Miller MR, Borthwick SJ, Shaw CA, et al., (2009). Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environ Health Perspect 7:611–6.
  • Monteiller C, Tran L, MacNee W, et al., (2007). The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–15.
  • Mossman BT, Glenn RE. (2013). Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit Rev Toxicol 43:632–60.
  • Nadeau D, Vincent R, Kumarathasan P, et al., (1996). Cytotoxicity of ambient air particles to rat lung macrophages: Comparison of cellular and functional assays. Toxicol In Vitro 10:161–72.
  • Naha PC, Davoren M, Lyng FM, Byrne HJ. (2010). Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol 246:91–9.
  • Nattrass C, Horwell CJ, Damby DE, et al., (2017). The effect of aluminium and sodium impurities on the in vitro toxicity and pro-inflammatory potential of cristobalite. Environ Res 159:164–75.
  • Nattrass C, Horwell CJ, Damby DE, et al., (2015). The global variability of diatomaceous earth toxicity: a physicochemical and in vitro investigation. J Occup Med Toxicol 10:23.
  • Nel A, Xia T, Mädler L, Li N. (2006). Toxic potential of materials at the nanolevel. Science 311:622–7.
  • Oberdörster G. (2002). Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 14:29–56.
  • Oberdörster G, Castranova V, Asgharian B, Sayre P. (2015). Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J Toxicol Environ Health, Part B 8:121–212.
  • Osmond-McLeod MJ, Poland CA, Murphy F, et al., (2011). Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Particle Fibre Toxicol 8:15.
  • Ovrevik J, Refsnes M, Schwarze P, Lag M. (2008). The ability of oxidative stress to mimic quartz-induced chemokine responses is lung cell line-dependent. Toxicol Lett 181:75–80.
  • Pang C, Neubauer N, Boyles M, et al., (2017). Releases from transparent blue automobile coatings containing nanoscale copper phthalocyanine and their effects on J774 A1 macrophages. NanoImpact 7:75–83.
  • Piret J-P, Bondarenko OM, Boyles MSP, et al., (2017). Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. Arch Toxicol 91:2315–30.
  • Porter DW, Ramsey D, Hubbs AF, et al., (2001). Time course of pulmonary response of rats to inhalation of crystalline silica: histological results and biochemical indices of damage, lipidosis, and fibrosis. J Environ Pathol Toxicol Oncol 20: 14.
  • Renwick LC, Brown D, Clouter A, Donaldson K. (2004). Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 61:442–7.
  • Rothen-Rutishauser B, Brown DM, Piallier-Boyles M, et al., (2010). Relating the physicochemical characteristics and dispersion of multiwalled carbon nanotubes in different suspension media to their oxidative reactivity in vitro and inflammation in vivo. Nanotoxicology 4:331–42.
  • Sawyer RT, Moon RJ, Beneke ES. (1981). Trapping and killing of candida albicans by corynebacterium parvum-activated livers. Infect Immun. 32:945–50.
  • Scapini P, Morini M, Tecchio C, et al., (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172:5034–40.
  • Schins RPF, Duffin R, Höhr D, et al., (2002). Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol. 15:1166–73.
  • Schlinkert P, Casals E, Boyles M, et al., (2015). The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnol 13:1.
  • Smith DF, Galkina E, Ley K, Huo Y. (2005). GRO family chemokines are specialized for monocyte arrest from flow. Am J Physiol 289:H1976–84.
  • Stone V, Jones R, Rollo K, et al., (2004). Effect of coal mine dust and clay extracts on the biological activity of the quartz surface. Toxicol Lett 149:255–9.
  • Tomatis M, Fenoglio I, Elias Z, et al., (2002). Effect of thermal treatment of refractory ceramic fibres on the induction of cytotoxicity and cell transformation. Ann Occup Hygiene 46:17680.
  • Tomlinson GS, Booth H, Petit SJ, et al., (2012). Adherent human alveolar macrophages exhibit a transient pro-inflammatory profile that confounds responses to innate immune stimulation. PLoS One 7:e40348.
  • van Ravenzwaay B, Landsiedel R, Fabian E, et al., (2009). Comparing fate and effects of three particles of different surface properties: Nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett 186:152–9.
  • Walker AM, Maxim LD, Utell M. (2002). Risk analysis for mortality from respiratory tumors in a cohort of refractory ceramic fiber workers. Regul Toxicol Pharmacol 35:95–104.
  • Westphal GA, Schremmer I, Rostek A, et al., (2015). Particle-induced cell migration assay (PICMA): a new in vitro assay for inflammatory particle effects based on permanent cell lines. Toxicol In Vitro 29:997–1005.
  • WHO. 1997. World Health Organization. Determination of Airborne Fibre Number Concentrations: A Recommended Method by Phase Contrast Optical Microscopy. World Health Organization, Geneva.
  • Wittmaack K. (2006). In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect. 115:187–94.
  • Ziemann C, Harrison PTC, Bellmann B, et al., (2014). Lack of marked cyto- and genotoxicity of cristobalite in devitrified (heated) alkaline earth silicate wools in short-term assays with cultured primary rat alveolar macrophages. Inhal Toxicol 26:113–27.