Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 30, 2018 - Issue 7-8
615
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Differences in the toxicity of cerium dioxide nanomaterials after inhalation can be explained by lung deposition, animal species and nanoforms

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 273-286 | Received 10 Apr 2018, Accepted 22 Aug 2018, Published online: 04 Oct 2018

References

  • Aalapati S, Ganapathy S, Manapuram S, et al. (2014). Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice. Nanotoxicology 8:786–98.
  • Arts JH, Hadi M, Irfan MA, et al. (2015). A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 71:S1–S27.
  • Arts JH, Irfan MA, Keene AM, et al. (2016). Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regul Toxicol Pharmacol 76:234–61.
  • Bakand S, Hayes A. (2016). Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 17:929.
  • Bermudez E, Mangum JB, Wong BA, et al. (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–57.
  • Borm P, Cassee FR, Oberdorster G. (2015). Lung particle overload: old school-new insights? Part Fibre Toxicol 12:10
  • Braakhuis HM, Cassee FR, Fokkens PH, et al. (2016). Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology 10:1–73.
  • Braakhuis HM, Park MV, Gosens I, et al. (2014). Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 11:18.
  • Buckley A, Warren J, Hodgson A, et al. (2017). Slow lung clearance and limited translocation of four sizes of inhaled iridium nanoparticles. Part Fibre Toxicol 14:5.
  • Celardo I, De Nicola M, Mandoli C, et al. (2011). Ce³+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles . ACS Nano 5:4537–49.
  • Dekkers S, Miller MR, Schins RPF, et al. (2017). The effect of zirconium doping of cerium dioxide nanoparticles on pulmonary and cardiovascular toxicity and biodistribution in mice after inhalation. Nanotoxicology 11:794–808.
  • Dekkers S, Oomen AG, Bleeker EA, et al. (2016). Towards a nanospecific approach for risk assessment. Regul Toxicol Pharmacol 80:46–59.
  • EC. 2017. Draft regulation Amendments of the Annexes to REACH for registration of nanomatereials. COMMISSION REGULATION (EU) …/… amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annexes I, III, VI, VII, VIII, IX, X, XI, and XII to address nanoforms of substances. In: Environment D-Gf, editor.
  • ECHA. 2017. How to prepare registration dossier that cover nanoforms: best practices. Helsinki: European Chemicals Agency. ECHA-17-G-13-EN.
  • Elder A, Gelein R, Finkelstein JN, et al. (2005). Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci 88:614–29.
  • Eom HJ, Choi J. (2009). Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77–83.
  • Forest V, Leclerc L, Hochepied JF, et al. (2017). Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol in Vitro 38:136–41.
  • Gandon A, Werle K, Neubauer N, et al. (2017). Surface reactivity measurements as required for grouping and read-across: an advanced FRAS protocol. J Phys Conf Ser 838:012033.
  • Geiser M. (2010). Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23:207–17.
  • Geraets L, Oomen AG, Schroeter JD, et al. (2012). Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study. Toxicol Sci 127:463–73.
  • Gosens I, Mathijssen LE, Bokkers BG, et al. (2014). Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 8:643–53.
  • Greim H, Ziegler-Skylakakis K. (2007). Risk assessment for biopersistent granular particles. Inhal Toxicol 19: 199–204.
  • Han SG, Lee JS, Ahn K, et al. (2015). Size-dependent clearance of gold nanoparticles from lungs of Sprague-Dawley rats after short-term inhalation exposure. Arch Toxicol 89:1083–94.
  • Keller J, Wohlleben W, Ma-Hock L, et al. (2014). Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria. Arch Toxicol 88:2033–59.
  • Kreyling WG, Semmler-Behnke M, Takenaka S, et al. (2013). Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Acc Chem Res 46:714–22.
  • Kuempel ED, Sweeney LM, Morris JB, et al. (2015). Advances in inhalation dosimetry models and methods for occupational risk assessment and exposure limit derivation. J Occup Environ Hyg 12: S18–S40.
  • Landsiedel R, Ma-Hock L, Hofmann T, et al. (2014). Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16.
  • Lin W, Huang YW, Zhou XD, et al. (2006). Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–7.
  • NanoMILE. 2017. D 7.2 Molecular mechanisms of toxicity of manufactured nanomaterials (MNMs) in vivo: identification of molecular mechanisms of toxicity in vivo (e.g. inhalation toxicity, myography, blood thrombogenicity) with emphasis on effects of surface coating and charge. NRCWE, RIVM, UEDIN, BASF SE and IUF.
  • Nel A, Xia T, Madler L, et al. (2006). Toxic potential of materials at the nanolevel. Science 311:622–7.
  • Oberdorster G, Oberdorster E, Oberdorster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39.
  • Oomen AG, Bleeker EA, Bos PM, et al. (2015). Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health 12:13415–34.
  • Park EJ, Choi J, Park YK, et al. (2008). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100.
  • Pauluhn J. (2017). Kinetic modeling of the retention and fate of inhaled cerium oxide nanoparticles in rats: the cumulative displacement volume of agglomerates determines the outcome. Regul Toxicol Pharmacol 86:319–31.
  • Peng L, He X, Zhang P, et al. (2014). Comparative pulmonary toxicity of two ceria nanoparticles with the same primary size. Int J Mol Sci 15:6072–85.
  • Semmler M, Seitz J, Erbe F, et al. (2004). Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16:453–9.
  • Stone V, Pozzi-Mucelli S, Tran L, et al. (2014). ITS-NANO-prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol 11:9.
  • Wang L, Ai W, Zhai Y, et al. (2015). Effects of nano-CeO2 with different nanocrystal morphologies on cytotoxicity in HepG2 Cells. Int J Environ Res Public Health 12:10806–19.
  • Warheit DB, Kreiling R, Levy LS. (2016). Relevance of the rat lung tumor response to particle overload for human risk assessment – update and interpretation of new data since ILSI 2000. Toxicology 374:42–59.
  • Warheit DB, Webb TR, Colvin VL, et al. (2007). Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95:270–80.
  • Wiemann M, Vennemann A, Sauer UG, et al. (2016). An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnol 14:16.
  • Xia T, Kovochich M, Liong M, et al. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–34.
  • Zhang H, Ji Z, Xia T, et al. (2012). Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.