Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 30, 2018 - Issue 9-10
204
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Engineered nanoparticle exposure and cardiovascular effects: the role of a neuronal-regulated pathway

, &
Pages 335-342 | Received 18 Jun 2018, Accepted 04 Oct 2018, Published online: 03 Jan 2019

References

  • Ahmad S, Otaal PS, Rai TS, et al. (2009). Circulating proinflammatory cytokines and N-terminal pro-brain natriuretic peptide significantly decrease with recovery of left ventricular function in patients with dilated cardiomyopathy. Mol Cell Biochem 324:139–45.
  • Araujo JA, Barajas B, Kleinman M, et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 102:589–96.
  • Bar H, Yacoby I, Benhar I. (2008). Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol 8:37.
  • Bengalli R, Gualtieri M, Capasso L, et al. (2017). Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier. Toxicol Lett 279:22–32.
  • Braakhuis HM, Gosens I, Krystek P, et al. (2014). Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol 11:49.
  • Brook RD, Rajagopalan S, Pope CA, 3rd, American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–78.
  • Bunger M. (2007). Strategies for developing and commercializing nanobio drugs, diagnostics and devices. Nanomedicine (Lond) 2:137–41.
  • Byrne JD, Baugh JA. (2008). The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J Med 11:43–50.
  • Campbell CT. (2013). The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Acc Chem Res 46:1712–9.
  • Chrysohoou C, Pitsavos C, Barbetseas J, et al. (2009). Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24:22–6.
  • Delaval M, Boland S, Solhonne B, et al. (2015). Acute exposure to silica nanoparticles enhances mortality and increases lung permeability in a mouse model of Pseudomonas aeruginosa pneumonia. Part Fibre Toxicol 12:1.
  • Dhingra S, Sharma AK, Arora RC, et al. (2009). IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res 82:59–66.
  • Duan J, Yu Y, Li Y, et al. (2013). Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One 8:e62087.
  • Erdely A, Liston A, Salmen-Muniz R, et al. (2011). Identification of systemic markers from a pulmonary carbon nanotube exposure. J Occup Environ Med 53:S80–S6.
  • Fazlollahi F, Kim YH, Sipos A, et al. (2013). Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms. Nanomedicine 9:786–94.
  • Fiordelisi A, Piscitelli P, Trimarco B, et al. (2017). The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev 22:337–47.
  • Frontiers in Physiology Editorial, O. (2015). Retraction: physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol 6:379.
  • Fukuda K, Kanazawa H, Aizawa Y, et al. (2015). Cardiac innervation and sudden cardiac death. Circ Res 116:2005–19.
  • Gojova A, Guo B, Kota RS, et al. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–9.
  • Gojova A, Lee JT, Jung HS, et al. (2009). Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhal Toxicol 21:123–30.
  • Grassi G, Mark A, Esler M. (2015). The sympathetic nervous system alterations in human hypertension. Circ Res 116:976–90.
  • Guic MM, Kosta V, Aljinovic J, et al. (2010). Characterization of spinal afferent neurons projecting to different chambers of the rat heart. Neurosci Lett 469:314–8.
  • Helfenstein M, Miragoli M, Rohr S, et al. (2008). Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicology 253:70–8.
  • Ilinskaya AN, Dobrovolskaia MA. (2013). Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine (Lond) 8:969–81.
  • Jawad H, Boccaccini AR, Ali NN, Harding SE. (2011). Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. Nanotoxicology 5:372–80.
  • Kan H, Wu Z, Lin YC, et al. (2014). The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultrafine titanium dioxide. Nanotoxicology 8:447–54.
  • Kan H, Wu Z, Young SH, et al. (2012). Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose ganglia. Nanotoxicology 6:736–45.
  • Knuckles TL, Yi J, Frazer DG, et al. (2012). Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology 6:724–35.
  • Koskela RS, Mutanen P, Sorsa JA, Klockars M. (2005). Respiratory disease and cardiovascular morbidity. Occup Environ Med 62:650–5.
  • Kosta V, Guic MM, Aljinovic J, et al. (2010). Immunohistochemical characteristics of neurons in nodose ganglia projecting to the different chambers of the rat heart. Auton Neurosci 155:33–8.
  • Kowalska M, Kocot K. (2016). Short-term exposure to ambient fine particulate matter (PM2,5 and PM10) and the risk of heart rhythm abnormalities and stroke. Postepy Hig Med Dosw (Online) 70:1017–25.
  • Kreyling WG, Semmler-Behnke M, Seitz J, et al. (2009). Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21: 55–60.
  • Kreyling WG, Semmler M, Erbe F, et al. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–30.
  • Kumar V, Kumari A, Guleria P, Yadav SK. (2012). Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam Toxicol 215:39–121.
  • Legramante JM, Valentini F, Magrini A, et al. (2009). Cardiac autonomic regulation after lung exposure to carbon nanotubes. Hum Exp Toxicol 28:369–75.
  • Leppanen M, Korpi A, Mikkonen S, et al. (2015). Inhaled silica-coated TiO2 nanoparticles induced airway irritation, airflow limitation and inflammation in mice. Nanotoxicology 9:210–8.
  • Li N, Georas S, Alexis N, et al. (2016). A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 138:386–96.
  • Li Z, Hulderman T, Salmen R, et al. (2007). Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–82.
  • Marquis BJ, Love SA, Braun KL, Haynes CL. (2009). Analytical methods to assess nanoparticle toxicity. Analyst 134:425–39.
  • Mazzola L. (2003). Commercializing nanotechnology. Nat Biotechnol 21:1137–43.
  • Mercer RR, Scabilloni JF, Hubbs AF, et al. (2013). Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol 10:38.
  • Moulopoulos SD. (2005). Heart rate variability and the autonomic nervous system. Eur J Intern Med 16:1–2.
  • Nemmar A, Al-Salam S, Beegam S, et al. (2017). The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. Int J Nanomedicine 12:2913–22.
  • Nemmar A, Yuvaraju P, Beegam S, et al. (2016). Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int J Nanomedicine 11:919–28.
  • Nijm J, Wikby A, Tompa A, et al. (2005). Circulating levels of proinflammatory cytokines and neutrophil-platelet aggregates in patients with coronary artery disease. Am J Cardiol 95:452–6.
  • Nurkiewicz TR, Porter DW, Barger M, et al. (2004). Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Perspect 112:1299–306.
  • Nurkiewicz TR, Porter DW, Barger M, et al. (2006). Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect 114:412–9.
  • Nurkiewicz TR, Porter DW, Hubbs AF, et al. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 5:1.
  • Nurkiewicz TR, Porter DW, Hubbs AF, et al. (2009). Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 110:191–203.
  • Nurkiewicz TR, Porter DW, Hubbs AF, et al and H. E. I. H. R. Committee (2011). Pulmonary particulate matter and systemic microvascular dysfunction. Res Rep Health Eff Inst 164:3–48.
  • Pacurari M, Qian Y, Fu W, et al. (2012). Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J Toxicol Environ Health A 75:129–47.
  • Paull R, Wolfe J, Hebert P, Sinkula M. (2003). Investing in nanotechnology. Nat Biotechnol 21:1144–7.
  • Planes C, Valeyre D, Loiseau A, et al. (1994). Ultrastructural alterations of the air-blood barrier in sarcoidosis and hypersensitivity pneumonitis and their relation to lung histopathology. Am J Respir Crit Care Med 150:1067–74.
  • Pope CA, 3rd, Burnett RT, Thurston GD, et al. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–7.
  • Samadishadlou M, Farshbaf M, Annabi N, et al. (2018). Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artif Cells Nanomed Biotechnol 46:1314–30.
  • Schulz R, Panas DL, Catena R, et al. (1995). The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumour necrosis factor-alpha. Br J Pharmacol 114:27–34.
  • Schwartz J, Dockery DW. (1992). Increased mortality in Philadelphia associated with daily air pollution concentrations. Am Rev Respir Dis 145:600–4.
  • Setyawati MI, Tay CY, Chia SL, et al. (2013). Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat Commun 4:1673.
  • Shindo T, Ikeda U, Ohkawa F, et al. (1995). Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovasc Res 29:813–9.
  • Simonet BM, Valcarcel M. (2009). Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:17–21.
  • Smulders S, Luyts K, Brabants G, et al. (2014). Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol Sci 141:132–40.
  • Spyer KM. (1982). Central nervous integration of cardiovascular control. J Exp Biol 100:109–28.
  • Stapleton PA, Minarchick VC, Cumpston AM, et al. (2012). Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 13:13781–803.
  • Stone V, Miller MR, Clift MJ, et al. (2016). Nanomaterials vs ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect 125:106002.
  • Takahashi H, Nishimura M, Sakamoto M, et al. (1992). Effects of interleukin-1 beta on blood pressure, sympathetic nerve activity, and pituitary endocrine functions in anesthetized rats. Am J Hypertens 5:224–9.
  • Tillie-Leblond I, Guery BP, Janin A, et al. (2002). Chronic bronchial allergic inflammation increases alveolar liquid clearance by TNF-alpha -dependent mechanism. Am J Physiol Lung Cell Mol Physiol 283:L1303–9.
  • Timonen KL, Vanninen E, de Hartog J, et al. (2006). Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. J Expo Sci Environ Epidemiol 16:332–41.
  • Tong H, McGee JK, Saxena RK, et al. (2009). Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol 239:224–32.
  • Totlandsdal AI, Skomedal T, Lag M, et al. (2008). Pro-inflammatory potential of ultrafine particles in mono- and co-cultures of primary cardiac cells. Toxicology 247:23–32.
  • Triposkiadis F, Karayannis G, Giamouzis G, et al. (2009). The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–62.
  • Weiss PS. (2008). Meeting global challenges by investing in nanoscience and nanotechnology. ACS Nano 2:2193.
  • Wold LE, Simkhovichz BZ, Kleinman MT, et al. (2006). In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovasc Toxicol 6:69–78.
  • Wu T, Tang M. (2018). Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38:25–40.
  • Yacobi NR, Malmstadt N, Fazlollahi F, et al. (2010). Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42:604–14.
  • Yan W, Lien HL, Koel BE, Zhang WX. (2013). Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77.
  • Yan Z, Wang W, Wu Y, et al. (2017). Zinc oxide nanoparticle-induced atherosclerotic alterations in vitro and in vivo. Int J Nanomedicine 12:4433–42.
  • Zakynthinos E, Pappa N. (2009). Inflammatory biomarkers in coronary artery disease. J Cardiol 53:317–33.
  • Zanotti-Cavazzoni SL, Hollenberg SM. (2009). Cardiac dysfunction in severe sepsis and septic shock. Curr Opin Crit Care 15:392–7.
  • Zhao L, Cheng G, Jin R, et al. (2016). Deletion of interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circ Res 118:1918–29.
  • Zheng W, McKinney W, Kashon M, et al. (2016). The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system. Part Fibre Toxicol 13:8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.