Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 30, 2018 - Issue 11-12
200
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Concentration-time extrapolation of short-term inhalation exposure levels: dimethyl sulfide, a case study using a chemical-specific toxic load exponent

, , & ORCID Icon
Pages 448-462 | Received 20 Sep 2018, Accepted 19 Nov 2018, Published online: 02 Jan 2019

References

  • Almeida AF, Nation PN, Guidotti TL. (2008). Mechanism and treatment of sulfide-induced coma: a rat model. Int J Toxicol 27:287–93.
  • American Conference of Governmental Industrial Hygienists (ACGIH). (2004). Threshold limit values and biological exposure indices. Cincinnati (OH): ACGIH. Dimethyl sulfide.
  • American Industrial Hygiene Association (AIHA). (2014). AIHA guideline foundation Emergency Response Planning (ERP) committee procedures and responsibilities. Fairfax (VA): AIHA.
  • American Industrial Hygiene Association (AIHA). (2016). Emergency response planning guidelines. Fairfax (VA): AIHA. Dimethyl sulfide.
  • Brown KG, Foureman GL. (2005). Concentration-time-response modeling for acute and short-term exposures. Regul Toxicol Pharmacol 43:45–54.
  • Chou C-HSJ, Holler J, de Rosa CT. (1998). Minimal risk levels (MRLs) for hazardous substances. J Clean Technol Environ Toxicol Occup Med 7:1–24.
  • Department of Energy (DOE) (US). (2016). Temporary emergency exposure limits for chemicals: methods and practice. Washington (DC): U.S. Department of Energy. Report DOE-HDBK-1046-2016.
  • Dow Chemical Company (Dow). (1957). Results of range finding toxicological tests on dimethyl sulfide. Midland (MI): The Dow Chemical Co.
  • Environmental Protection Agency (US) (USEPA). (1994). Methods for derivation of inhalation reference concentrations and application of inhalation dosimetry. Washington (DC): U.S. Environmental Protection Agency. Technical Report number EPA/600/8-90/066F.
  • Environmental Protection Agency (US) (USEPA). (2012). Benchmark dose technical guidance. Washington (DC): U.S. Environmental Protection Agency. Technical Report number EPA/100/R-12/001.
  • Environmental Protection Agency (US) (USEPA). (2016a). Benchmark dose software (BMDS). Washington (DC): U.S. Environmental Protection Agency. User Manual, Version 2.6.0.1.
  • Environmental Protection Agency (US) (USEPA). (2016b). Chemical Data Reporting under the Toxic Substances Control Act. Washington (DC): U.S. Environmental Protection Agency. Public Version CDR Database.
  • European Chemicals Agency (ECHA). (2018). REACH Dossier for EC 200-846-2. Helsinki, Finland.
  • Farwell SO, Barinaga CJ. (1986). Sulfur-selective detection with the FPD: Current enigmas, practical usage, and future directions. J Chromatogr Sci 24:483–94.
  • Finney DJ. (1977). Probit Analysis. 3rd ed. Cambridge (UK): Cambridge University Press.
  • Hakura A, Mochida H, Yamatsu K. (1993). Dimethyl sulfoxide (DMSO) is mutagenic for bacterial mutagenicity tester strains. Mutat Res 303:127–33.
  • Harvey-Woodworth CN. (2013). Dimethylsulphidemia: the significance of dimethyl sulphide in extra-oral, blood borne halitosis. Br Dent J 214:E20.
  • Ivey JP, Swan HB. (1995). An automated instrument for the analysis of atmospheric dimethyl sulfide and carbon disulfide. Anal Chim Acta 306:259–66.
  • Johnson JE, Lovelock JE. (1988). Electron capture sulfur detector: reduced sulfur species detection at the femtomole level. Anal Chem 60:812–6.
  • Kangas J, Jäppinen P, Savolainen H. (1984). Exposure to hydrogen sulfide, mercaptans and sulfur dioxide in pulp industry. Am Ind Hyg Assoc J 45:787–90.
  • Kappler U, Schäfer H. (2014). Transformations of dimethylsulfide. In: Kroneck PMH, Sosa Torres ME, editors. The metal-driven biogeochemistry of gaseous compounds in the environment. Hoboken (NJ): Wiley; p. 279–313. (Metal ions in life sciences; 14).
  • Katz SH, Talbert EJ. (1930). Intensities of odors and irritating effects of waning agents for inflammable and poisonous gases. Washington (DC): Government Printing Office. U.S. Dept. of Commerce/Bureau of Mines Technical Paper 480; p. 1–37.
  • Koptyaev VG. (1967). Experimental data to substantiate the maximum permissible concentration of dimethyl sulfide in water bodies. Hyg Sanit 32:315–20.
  • Leonardos G, Kendall D, Barnard N. (1969). Odor threshold determination of 53 odorant chemicals. J Air Pollut Control Assoc 19:91–5.
  • Litchfield JT, Wilcoxon F. (1949). A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113.
  • Ljunggren G, Norberg B. (1943). On the effect and toxicity of dimethyl sulfide, dimethyl disulfide and methyl mercaptan. Acta Physiolol Scand 5:248–55.
  • Mainland JD, Keller A, Li YR, et al. (2014). The missense of smell: functional variability in the human odorant receptor repertoire. Nat Neurosci 17:114–20.
  • Nakamura S-I, Oda Y, Ugawa M. (1990). Induction of umu gene expression in Salmonella typhimurium TA1535/pSK1002 by dimethyl sulfoxide (DMSO). Mutat Res 229:11–5.
  • National Research Council (NRC) – Subcommittee on Acute Exposure Guideline Levels. (2001). Standing operating procedures for developing acute exposure guideline levels for hazardous chemicals. Washington (DC): National Academies Press.
  • National Research Council (NRC). (2010). Acute exposure guideline levels for selected chemicals. Vol. 9. Washington (DC): National Academies Press. Hydrogen sulfide; p. 173–218.
  • National Research Council (NRC). (2013). Acute exposure guideline levels for selected chemicals. Vol. 15. Washington (DC): National Academies Press. Methyl mercaptan; p. 44–74.
  • Neilson GD. (1991). Mechanisms of activation of the sensory irritant receptor by airborne chemicals. Crit Rev Toxicol 21:183–208.
  • Nishida K, Yamakawa M, Honda T. (1979). Experimental investigations on the combined actions of components mixed in odorous gas. Mem Fat Eng Kyoto Univ 41:552–65.
  • Parham F, Portier C. (2006). Benchmark dose approach. In: Edler L, Kitsos C, editors. Recent advances in quantitative methods in cancer and human health risk assessment. West Sussex (UK): Wiley; p. 239–254.
  • Péry AR, Troise A, Tissot S, Vincent JM. (2010). Comparison of models to analyze mortality data and derive concentration-time response relationship of inhaled chemicals. Regul Toxicol Pharmacol 57:124–8.
  • Pham M, Müller J-F, Brasseur GP, et al. (1996). A 3D model study of the global sulphur cycle: contributions of anthropogenic and biogenic sources. Atmos Environ 30:1815–22.
  • Pohanish RP. (2012). Sittig’s handbook of toxic and hazardous chemicals and carcinogens. 6th ed. Oxford (UK): Elsevier.
  • Ruijten MMWM, Arts JHE, Boogaard PJ, et al. (2015). Method for derivation of probit functions for acute inhalation toxicity. Bilthoven (Netherlands): Rijksinstituut voor Volksgezondheid en Milieu. RIVM Report 2015-0102.
  • Sandmeyer EE. (1981). Organic sulfur compounds; 3.1 methyl sulfide. In: Clayton GD, Clayton FE, editors. Patty’s industrial hygiene and toxicology. 3rd ed. Vol. 2A. New York (NY): Wiley; p. 2083–2085.
  • Schoenig G. (1967a). Acute toxicity studies on dimethyl sulfide. Northbrook (IL): Industrial Bio-Test Laboratories, Inc. IBT No. A5534. (Report to Crown Zellerbach Corporation).
  • Schoenig G. (1967b). Acute oral toxicity of dimethyl sulfide. Northbrook (IL): Industrial Bio-Test Laboratories, Inc. IBT No. A4827. (Report to Crown Zellerbach Corporation).
  • Schwimmer S. (1969). Inhibition of carbonic anhydrase by mercaptans. Enzymologia 37:163–73.
  • Selyuzhitskii GV. (1972). Eksperimentalnye dannye k obosnovaniu PDK metilmerkaptana dumetilsulfida i dimetildisulfida v vozduhe rabochei zony celliulozno-bumazhnyh predpreiatei [Experimental data for the derivation of MAC for methyl mercaptan, dimethyl sulfide, and dimethyl disulfide in the air of production areas of pulp and paper mills]. Gig Tr Prof Zabol 6:46–7. Russian.
  • Sullivan JJ, Quimby BD. (1990). Characterisation of a computerized photodiode array spectrometer for a gas chromatography-atomic emission spectrometry. Analyt Chem 62:1034–42.
  • Tansy MF, Kendall FM, Fantasia J, et al. (1981). Acute and subchronic toxicity studies of rats exposed to vapors of methyl mercaptan and other reduced-sulfur compounds. J Toxicol Environ Health 8:71–88.
  • ten Berge WF, Zwart A, Appelman LM. (1986). Concentration-time mortality response relationship of irritants and systematically acting vapours and gases. J Hazard Mater 13:301–9.
  • Terazawa K, Mizukami K, Wu B, Takatori T. (1991). Fatality due to inhalation of dimethyl sulfide in a confined space: a case report and animal experiments. Int J Legal Med 104:141–4.
  • Thornton DC, Bandy AR, Ridgeway RE, et al. (1990). Determination of part-per-trillion levels of atmospheric dimethyl sulfide by isotope dilution gas chromatography/mass spectrometry. J Atmos Chem 11:299–308.
  • Uzhdavini ER. (1986). Toxicologia organicheskih soedinenei sery [Toxicology of organosulfur compounds]. Riga (USSR): Zinatne. Russian.
  • Vento RA. (1966). Sluchai otravlenia odorant-sulfanom [Incident of odorant-sulfane poisoning]. In: Sbornik nauchno-prakticheskih rabot sudebnyh medikov i kriminalistov [Compendium of applied and research reports of forensic physicians and criminologists]. 3. Petrozavodsk (USSR): Karelian Publishing House; p. 129–132. Russian.
  • Wilby FV. (1969). Variation in recognition odor threshold of a panel. J Air Pollut Control Assoc 19:96–100.
  • Zieve L, Doizaki WM, Zieve FJ. (1974). Synergism between mercaptans and ammonia or fatty acids in the production of coma: a possible role for mercaptans in the pathogenesis of hepatic coma. J Lab Clin Med 81:16–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.