Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 32, 2020 - Issue 6
2,985
Views
19
CrossRef citations to date
0
Altmetric
Review Article

A review of pulmonary toxicity studies of nanocellulose

ORCID Icon & ORCID Icon
Pages 231-239 | Received 02 Mar 2020, Accepted 11 May 2020, Published online: 27 May 2020

References

  • Adamis Z, Tátrai E, Honma K, Ungváry G. 1997. In vitro and in vivo assessment of the pulmonary toxicity of cellulose. J Appl Toxicol. 17(2):137–141.
  • Bar A, Van Ommen B, Timonen M. 1995. Metabolic disposition in rats of regular and enzymatically depolymerized sodium carboxymethylcellulose. Food Chem Toxicol. 33(11):901–907.
  • Catalán J, Rydman E, Aimonen K, Hannukainen KS, Suhonen S, Vanhala E, Moreno C, Meyer V, Perez DD, Sneck A, Forsström U, et al. 2017. Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis. 32(1):23–31.
  • Chen M, Sun Y, Liang J, Zeng G, Li Z, Tang L, Zhu Y, Jiang D, Song B. 2019. Understanding the influence of carbon nanomaterials on microbial communities. Environ Int. 126:690–698.
  • Clift MJD, Foster EJ, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B, Weder C. 2011. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules. 12(10):3666–3673.
  • Cullen RT, Searl A, Miller BG, Davis JM, Jones AD. 2000. Pulmonary and intraperitoneal inflammation induced by cellulose fibres. J Appl Toxicol. 20(1):49–60.
  • Davis J. 1993. The need for standardising testing procedure for all products capable of liberating respirable fibers: the example of materials based on cellulose. Br J Ind Med. 50(2):187–190.
  • de Lima R, Oliveira FL, Rodrigues MC, Abreu BM, Yamawaki PC, Vieira IJ, Teixeira EM, Corrêa AC, Caparelli MLH, Fernandes FL. 2012. Evaluation of the genotoxicity of cellulose nanofibers. Int J Nanomed. 7:3555–3565.
  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y. 2007. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon. 45(7):1419–1424.
  • Despres HW, Sabra A, Anderson P, Hemraz UD, Boluk Y, Sunasee R, Ckless K. 2019. Mechanisms of the immune response cause by cationic and anionic surface functionalized cellulose nanocrystals using cell-based assays. Toxicol in Vitro. 55:124–133.
  • Dong J, Ma Q. 2015. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 9(5):658–676.
  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, et al. 2010. Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci. 45(1):1–33.
  • Elder R. 1986. Final report on the safety assessment of hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxypropyl methylcellulose and cellulose gum. J Am Col Toxicol. 5:1–59.
  • Ellakkani MA, Alarie Y, Weyel D, Karol MH. 1987. Chronic pulmonary effects in guinea pigs from prolonged inhalation of cotton dust. Toxicol Appl Pharmacol. 88(3):354–369.
  • Ellakkani MA, Alarie YC, Weyel DA, Mazumdar S, Karol MH. 1984. Pulmonary reactions to inhaled cotton dust: an animal model for byssinosis. Toxicol Appl Pharmacol. 74(2):267–284.
  • Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. 2012. Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol. 63(2):188–195.
  • Endes C, Mueller S, Kinnear C, Vanhecke D, Foster EJ, Petri-Fink A, Weder C, Clift MJ, Rothen-Rutishauser B. 2015. Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromolecules. 16(4):1267–1275.
  • Farcas MT, Kisin ER, Menas AL, Gutkin DW, Star A, Reiner RS, Yanamala N, Savolainen K, Shvedova AA. 2016. Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. J Toxicol Environ Health Part A. 79(21):984–997.
  • Food and Drug Administration 1973. Select Committee on GRAS Substances. [accessed 13 May 2019]. https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS&sort=Sortsubstance&order=ASC&startrow=1&type=basic&search=cellulose.
  • Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K. 2016. Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicol Lett. 257:23–37.
  • Glegg RE, Kertesz ZI. 1957. Effect of gamma‐radiation on cellulose. J Polym Sci. 26(114):289–297.
  • Hadrup N, Knudsen KB, Berthing T, Wolff H, Bengtson S, Kofoed C, Espersen R, Højgaard C, Winther JR, Willemoës M, et al. 2019. Pulmonary effects of nanofibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses. Environ Toxicol Pharmacol. 66:116–125.
  • Ilves M, Vilske S, Aimonen K, Lindberg HK, Pesonen S, Wedin I, Nuopponen M, Vanhala E, Højgaard C, Winther JR, et al. 2018. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology. 12(7):729–746.
  • Jelinková M, Briestenský J, Santar I, Ríhová B. 2002. In vitro and in vivo immunomodulatory effects of microdispersed oxidized cellulose. Int Immunopharmacol. 2(10):1429–1441.
  • Jimenez AS, Jaramillo F, Hemraz UD, Boluk Y, Ckless K, Sunasee R. 2017. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines. Nanotechnol Sci Appl. 10:123–136.
  • Kimura T, Sudo K, Kanzaki Y, Miki K, Takeichi Y, Kurosaki Y, Nakayama T. 1994. Drug absorption from large intestine: physicochemical factors governing drug absorption. Biol Pharm Bull. 17(2):327–333.
  • Kobayashi N, Izumi H, Morimoto Y. 2017. Review of toxicity studies of carbon nanotubes. J Occup Health. 59(5):394–407.
  • Lopes VR, Sanchez-Martinez C, Strømme M, Ferraz N. 2017. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part Fibre Toxicol. 14(1):1.
  • Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH. 2010. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interf. 2(10):2924–2932.
  • Menas AL, Yanamala N, Farcas MT, Russo M, Friend S, Fournier PM, Star A, Iavicoli I, Shurin GV, Vogel UB, et al. 2017. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: cytotoxicity or inflammation?. Chemosphere. 171:671–680.
  • Milton DK, Godleski JJ, Feldman HA, Greaves IA. 1990. Toxicity of intratracheally instilled cotton dust, cellulose, and endotoxin. Am Rev Respir Dis. 142(1):184–192.
  • Moon RJ, Martini A, Nairn J, Simonsen J, Young-Blood J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 40(7):3941–3994.
  • Morgan DL. 2006. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (celluloseins). Toxic Rep Ser. 74:1–62.
  • Morgan DL, Su YF, Dill JA, Turnier JC, Westerberg RB, Smith CS. 2004. Chemical and physical characteristics of cellulose insulation particulates, and evaluation of potential acute pulmonary toxicity. Am J Ind Med. 46(6):554–569.
  • Muhle H, Ernstb H, Bellmann B. 1997. Investigation of the durability of cellulose fibres in rat lungs. Ann Occup Hyg. 41:184–188.
  • Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. 2009. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci. 110(2):442–448.
  • Munk M, Camargo LS, Quintão CC, Silva SR, Souza ED, Raposo NR, Marconcini JM, Jorio A, Ladeira LO, Brandão HM. 2016. Biocompatibility assessment of fibrous nanomaterials in mammalian embryos. Nanomedicine. 12(5):1151–1159.
  • Nagato LK, Lourenço MG, Cadete RA, Leite-Júnior JH, Koatz VL, Rocco PR, Faffe DS, Zin WA. 2008. Microcrystalline cellulose induces time-dependent lung functional and inflammatory changes. Respir Physiol Neurobiol. 164(3):331–337.
  • Noguchi Y, Homma I, Matsubara Y. 2017. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose. 24(3):1295–1305.
  • Park EJ, Khaliullin TO, Shurin MR, Kisin ER, Yanamala N, Fadeel B, Chang J, Shvedova AA. 2018. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J Immunotoxicol. 15(1):12–23.
  • Pinto FCM, De-Oliveira A, De-Carvalho RR, Gomes-Carneiro MR, Coelho DR, Lima SVC, Paumgartten FJR, Aguiar J. 2016. Acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of a cellulosic exopolysaccharide obtained from sugarcane molasses. Carbohydr Polym. 137:556–560.
  • Pitkanen M, Kangas H, Laitinen O, Sneck A, Lahtinen P, Peresin MS, Niinimäki J. 2014. Characteristics and safety of nano-sized cellulose fibrils. Cellulose. 21(6):3871–3886.
  • Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S. 2018. Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustainable Chem Eng. 6(3):2807–2828.
  • Rol F, Belgacem MN, Gandini A, Bras J. 2019. Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci. 88:241–264.
  • Shatkin JA, Oberdörster G. 2016. Comment on Shvedova et al. (2016), “gender differences in murine pulmonary responses elicited by cellulose nanocrystals". Part Fibre Toxicol. 13(1):59.
  • Shvedova AA, Kisin ER, Yanamala N, Farcas MT, Menas AL, Williams A, Fournier PM, Reynolds JS, Gutkin DW, Star A, et al. 2016. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part Fibre Toxicol. 13(1):28.
  • Silva-Carvalho R, Silva JP, Ferreirinha P, Leitão AF, Andrade FK, Gil da CRM, Cristelo C, Rosa MF, Vilanova M, Gama FM. 2019. Inhalation of bacterial cellulose nanofibrils triggers an inflammatory response and changes lung tissue morphology of mice. Toxicol Res. 35(1):45–63.
  • Stefaniak AB, Seehra MS, Fix NR, Leonard SS. 2014. Lung biodurability and free radical production of cellulose nanomaterials. Inhal Toxicol. 26(12):733–749.
  • Takagi A, Hirose A, Futakuchi M, Tsuda H, Kanno J. 2012. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci. 103(8):1440–1444.
  • Tátrai E, Brozik M, Adamis Z, Merétey K, Ungváry G. 1996. In vivo pulmonary toxicity of cellulose in rats. J Appl Toxicol. 16(2):129–135.
  • Tayeb AH, Amini E, Ghasemi S, Tajvidi M. 2018. Cellulose nanomaterials—binding properties and applications: a review. Molecules. 23(10):2684.
  • Toyokuni S. 2013. Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev. 65(15):2098–2110.
  • van der Laan JW, DeGeorge J Jr. 2013. Global approach in safety testing: ICH guidelines explained. New York (NY): Springer. ISBN 978-1-4614-5950-7.
  • Ventura C, Lourenço AF, Sousa-Uva A, Ferreira PJT, Silva MJ. 2018. Evaluating the genotoxicity of cellulose nanofibrils in a co-culture of human lung epithelial cells and monocyte-derived macrophages. Toxicol Lett. 291:178–183.
  • Wang X, Chang CH, Jiang J, Liu Q, Liao YP, Lu J, Li L, Liu X, Kim J, Ahmed A, et al. 2019. The crystallinity and aspect ratio of cellulose nanomaterials determine their pro-inflammatory and immune adjuvant effects in vitro and in vivo. Small. 15(42):e1901642.
  • Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, Shvedova AA. 2014. In Vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng. 2(7):1691–1698.
  • Yanamala N, Kisin ER, Menas AL, Farcas MT, Khaliullin TO, Vogel UB, Shurin GV, Schwegler-Berry D, Fournier PM, Star A, et al. 2016. In vitro toxicity evaluation of lignin-(un)coated cellulose based nanomaterials on human A549 and THP-1 cells. Biomacromolecules. 17(11):3464–3473.