Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 32, 2020 - Issue 6
512
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Transfer of metals in the liquids of electronic cigarettes

ORCID Icon, , ORCID Icon, , &
Pages 240-248 | Received 03 Jan 2020, Accepted 18 May 2020, Published online: 14 Jun 2020

References

  • Antosz FJ, Xiang YQ, Diaz AR, Jensen AJ. 2012. The use of total reflectance X-ray fluorescence (TXRF) for the determination of metals in the pharmaceutical industry. J Pharm Biomed Anal. 62:17–22.
  • Arnold C. 2018. Between the tank and the coil: assessing how metals end up in e-cigarette liquid and vapor. Environ Health Perspect. 126(6):064002.
  • Baker RR, Bishop LJ. 2004. The pyrolysis of tobacco ingredients. J an App Pyrolysis. 71(1):223–311.
  • Banerji KK. 1987. Kinetics and mechanism of the oxidation of aliphatic aldehydes by sodium n-bromoarylsulphonam1des in acid solution. Tetrahedron. 43(24):5949–5954.
  • Bekki K, Uchiyama S, Ohta K, Inaba Y, Nakagome H, Kunugita N. 2014. Carbonyl compounds generated from electronic cigarettes. Int J Environ Res Public Health. 11(11):11192–11200.
  • Bregeault JM, Launay F, Atlamsani A. 2001. Catalytic oxidative carbon-carbon bond cleavage of ketones with dioxygen: assessment of some metal complexes. Some alternatives for preparing α, ω-dicarboxylic acids. Comptes Rendus de L’Académie Des Sciences - Series IIC – Chem. 4(1):11–26.
  • Brewster TP, Goldberg JM, Tran JC, Heinekey DM, Goldberg KI. 2016. High catalytic efficiency combined with high selectivity for the aldehyde–water shift reaction using (para -cymene) ruthenium precatalysts. ACS Catal. 6(9):6302–6305.
  • Bühler W, Dinjus E, Ederer HJ, Kruse A, Mas C. 2002. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. The J Supercr Fluids. 22(1):37–53.
  • Cherkashina TY, Panteeva SV, Pashkova GV. 2014. Applicability of total reflection X-ray fluorescence spectrometry for multielement analysis of geological and environmental objects. Spectrochim. Acta. 99(Part B):59–66.
  • Clayton PM, Vas CA, Bui TTT, Drake AF, McAdam K. 2013. Spectroscopic investigations into the acid–base properties of nicotine at different temperatures. Anal Methods. 5(1):81–88.
  • Conklin DJ, Ogunwale MA, Chen Y, Theis WS, Nantz MH, Fu XA, Chen LC, Riggs DW, Lorkiewicz P, Bhatnagar A, et al. 2018. Electronic cigarette-generated aldehydes: The contribution of e-liquid components to their formation and the use of urinary aldehyde metabolites as biomarkers of exposure. Aerosol Sci Technol. 52(11):1219–1232.
  • Esfandiari H, Jameh-Bozorghi S, Esmaielzadeh S, Shafiee MRM, Ghashang M. 2013. Nickel(II) catalyzed oxidation of aldehyde derivatives to their carboxylic acid or ester analogs. Res Chem Intermed. 39(7):3319–3325.
  • Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, Prokopowicz A, Jablonska-Czapla M, Rosik-Dulewska C, Havel C, et al. 2014. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control. 23(2):133–139.
  • Haque SA, Canete S. 2018. Facilitated tobacco-specific nitrosamine formation from nicotine in the presence of Cu 2+ ions. Ind Crops Prods. 122:493–497.
  • Hendriks CF, van Beek HCA, Heertjes PM. 1978. The kinetics of the autoxidation of aldehydes in the presence of cobalt(II) and cobalt(III) acetate in acetic acid solution. Ind Eng Chem Prod Res Dev. 17(3):260–264.
  • Hess CA, Olmedo P, Navas-Acien A, Goessler W, Cohen JE, Rule AM. 2017. E-cigarettes as a source of toxic and potentially carcinogenic metals. Environ Res. 152:221–225.
  • Hoover JM, Steves JE, Stahl SS. 2012. Copper(I)/TEMPO-catalyzed aerobic oxidation of primary alcohols to aldehydes with ambient air. Nat Protoc. 7(6):1161–1166.
  • Jiang N, Ragauskas AJ. 2006. Cu(II)-catalyzed selective aerobic oxidation of alcohols under mild conditions. J Org Chem. 71(18):7087–7090.
  • Jiang X, Zhai Y, Chen J, Han Y, Yang Z, Ma S. 2018. Iron-catalyzed aerobic oxidation of aldehydes: single component catalyst and mechanistic studies: iron-catalyzed aerobic oxidation of aldehydes: single component catalyst and mechanistic studies. Chin J Chem. 36(1):15–19.
  • Jo SH, Kim KH. 2016. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol. J Chrom A. 1429:369–373.
  • Kamilari E, Farsalinos K, Poulas K, Kontoyannis C, Orkoula M. 2018. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry. Food Chem Toxicol. 116 (Pt B):233–237.
  • Kim SA, Smith S, Beauchamp C, Song Y, Chiang M, Giuseppetti A, Frukhtbeyn S, Shaffer I, Wilhide J, Routkevitch D, et al. 2018. Cariogenic potential of sweet flavors in electronic-cigarette liquids. PLoS One. 13(9):e0203717.
  • Lee MH, Szulejko JE, Kim KH. 2018. Determination of carbonyl compounds in electronic cigarette refill solutions and aerosols through liquid-phase dinitrophenyl hydrazine derivatization. Env Monitor Assess. 190(4):200.
  • Lee MS, LeBouf RF, Son YS, Koutrakis P, Christiani DC. 2017. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes. Env Health. 16(1):42.
  • Liu KJ, Fu YL, Xie LY, Wu C, He WB, Peng S, Wang Z, Bao WH, Cao Z, Xu X, et al. 2018. Green and efficient: oxidation of aldehydes to carboxylic acids and acid anhydrides with air. ACS Sustainable Chem Eng. 6(4):4916–4921.
  • Młochowski J, Brząszcz M, Giurg M, Palus J, Wójtowicz H. 2003. Selenium-promoted oxidation of organic compounds: reactions and mechanisms. Eur J Org Chem. 2003(22):4329–4339.
  • Na CJ, Jo SH, Kim KH, Sohn JR, Son YS. 2019. The transfer characteristics of heavy metals in electronic cigarette liquid. Env Res. 174:152–159.
  • Olmedo P, Goessler W, Tanda S, Grau-Perez M, Jarmul S, Aherrera A, Chen R, Hilpert M, Cohen JE, Navas-Acien A, et al. 2018. Metal concentrations in e-cigarette liquid and aerosol samples: the contribution of metallic coils. Environ Health Perspect. 126(2):027010.
  • Owoade OK, Olise FS, Olaniyi HB, Bolzacchini E. 2009. An ICP-OES, TXRF and EDXRF analysis of airborne particulate samples in an iron and steel smelter environment. Toxicol Environ Chem. 91(5):873–881.
  • Papaefstathiou E, Stylianou M, Agapiou A. 2019. Main and side stream effects of electronic cigarettes. J Environ Manage. 238:10–17.
  • Patnaik CP, Mohapatro SN, Panigrahi AK, Panda RS. 1987. Peroxy acid oxidations. I. A kinetic and mechanistic study of oxidation of acetylacetone by peroxomonophosphoric acid and hydrogen peroxide in alkaline medium. BCSJ. 60(9):3391–3395.
  • Salamone M, Mangiacapra L, DiLabio GA, Bietti M. 2013. Effect of metal ions on the reactions of the cumyloxyl radical with hydrogen atom donors. fine control on hydrogen abstraction reactivity determined by Lewis acid-base interactions. J Am Chem Soc. 135(1):415–423.
  • Saliba NA, El Hellani A, Honein E, Salman R, Talih S, Zeaiter J, Shihadeh A. 2018. Surface chemistry of electronic cigarette electrical heating coils: effects of metal type on propylene glycol thermal decomposition. J Anal Appl Pyrolysis. 134:520–525.
  • Schmeltz I, Wenger A, Hoffmann D, Tso TC. 1979. Chemical studies on tobacco smoke. 63. The fate of nicotine during pyrolysis and in a burning cigaret. J Agric Food Chem. 27(3):602–608.
  • Shaikh TM, Hong FE. 2013. Efficient method for the oxidation of aldehydes and diols with tert-butylhydroperoxide under transition metal-free conditions. Tetrahedron. 69(42):8929–8935.
  • Sleiman M, Logue JM, Montesinos VN, Russell ML, Litter MI, Gundel LA, Destaillats H. 2016. Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ Sci Technol. 50(17):9644–9651.
  • Stein YS, Antal MJ, Jones M. 1983. A study of the gas-phase pyrolysis of glycerol. J. Analyt. App. Pyrolysis. 4(4):283–296.
  • Varga I. 2007. Iodine determination in dietary supplement products by TXRF and ICPAES spectrometry. Microchem J. 85(1):127–131.
  • Wang X, Chen RX, Wei ZF, Zhang CY, Tu HY, Zhang AD. 2016. Chemoselective transformation of diarylethanones to arylmethanoic acids and diarylmethanones and mechanistic insights. The J Org Chem. 81(1):38–49.
  • Williams M, Bozhilov KN, Talbot P. 2019. Analysis of the elements and metals in multiple generations of electronic cigarette atomizers. Environ Res. 175:156–166.
  • Williams M, Villarreal A, Bozhilov K, Lin S, Talbot P. 2013. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One. 8(3):e57987.
  • Witzemann EJ. 1914. The preparation of acrolein. J Am Chem Soc. 36(8):1766–1770.
  • Zhao D, Navas-Acien A, Ilievski V, Slavkovich V, Olmedo P, Adria-Mora B, Domingo-Relloso A, Aherrera A, Kleiman NJ, Rule AM, et al. 2019. Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings. Environ Res. 174:125–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.