Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 35, 2023 - Issue 7-8
163
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Toxicological and epidemiological approaches to carcinogenic potency modeling for mixed mineral fiber exposure: the case of fibrous balangeroite and chrysotile

&
Pages 185-200 | Received 19 Jan 2023, Accepted 08 May 2023, Published online: 23 May 2023

References

  • Attanoos RL, Churg A, Galateau-Salle F, Gibbs AR, Roggli VL. 2018. Malignant mesothelioma and its non-asbestos causes. Arch Pathol Lab Med. 142(6):753–760.
  • Belluso E, Ferraris G. 1991. New data on balangeroite and carlosturanite from alpine serpentinites. Eur J Mineral. 3(3):559–566.
  • Berman DW. 2011. Apples to apples: the origin and magnitude of differences in asbestos cancer risk estimates derived using varying protocols. Risk Anal. 31(8):1308–1326.
  • Camus M, Siemiatycki J, Case BW, Desy M, Richardson L, Campbell S. 2002. Risk of mesothelioma among women living near chrysotile mines versus US EPA asbestos risk model: preliminary findings. Ann Occup Hyg. 46(Suppl. 1):95–98.
  • Case BW, McDonald JC. 2008. Chrysotile, tremolite, balangeroite and mesothelioma: similar situations? Occup Environ Med. (E-letter) http://oem.bmj.com/content/65/12/815.abstract/reply#oemed_el_589.
  • Compagnoni R, Ferraris G, Flora L. 1983. Balangeroite, a new fibrous silicate related to gageite from Balangero, Italy. Am Min. 68(1–2):214–219.
  • Compagnoni R, Ferraris G, Mellini M. 1985. Carlosturanite, a new asbestiform rock-forming silicate from Val Varaita, Italy. Am Min. 70(7–8):767–772.
  • Darnton L. 2023. Quantitative assessment of mesothelioma and lung cancer risk based on phase contrast microscopy (PCM) estimates of fibre exposure: an update of 2000 asbestos count data. Environmental Research. https://doi.org/10.1016/j.envres.2022.114753.
  • Evans BW, Kuehner SM. 2011. A nickel–iron analogue of balangeroite and gageite (Sasaguri, Kyushu, Japan). Eur J Mineral. 23(5):717–720.
  • Fornero E, Belluso E, Capella S, Bellis D. 2009. Environmental exposure to asbestos and other inorganic fibres using animal lung model. Sci Total Environ. 407(3):1010–1018.
  • Fubini B, Fenoglio I. 2007. Toxic potential of mineral dusts. Elements. 3(6):407–414.
  • Gibbs GW, Hwang CY. 1979. Dimensions of airborne asbestos fibres. IARC Sci Publ. 30:69–78.
  • Groppo C, Tomatis M, Turci F, Gazzano E, Ghigo D, Compagnoni R, Fubini B. 2005. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the Western Alps. Part 1. Identification and characterization. J Toxicol Environ Health A. 68(1):1–19.
  • Gualtieri AF, Pollastri S, Bursi Gandolfi N, Gualtieri ML. 2018. In vitro acellular dissolution of mineral fibres: a comparative study. Sci Rep. 8(1):7071.
  • Gunter ME, Dyar MD, Twamley B, Foit FF, Cornelius S. 2003. Composition, Fe3+/∑Fe, and crystal structure of non-asbestiform and asbestiform amphiboles from Libby, Montana, U.S.A. Am Min. 88(11–12):1970–1978.
  • Hodgson J, Darnton A. 2000. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg. 44(8):565–601.
  • Korchevskiy A, Rasmuson JO, Rasmuson EJ. 2019. Empirical model of mesothelioma potency factors for different mineral fibers based on their chemical composition and dimensionality. Inhal Toxicol. 31(5):180–191.
  • Korchevskiy A. 2021. Using benchmark dose modeling for the quantitative risk assessment: carbon nanotubes, asbestos, glyphosate. J Appl Toxicol. 41(1):148–160.
  • Korchevskiy AA, Wylie AG. 2021. Dimensional determinants for the carcinogenic potency of elongate amphibole particles. Inhal Toxicol. 33(6–8):244–259.
  • Korchevskiy AA, Korchevskiy A. 2022. Non-linearity in cancer dose–response: the role of exposure duration. Comput Toxicol. 22:100217.
  • Korchevskiy A, Wylie A. 2022a. Dimensional characteristics of the major types of amphibole mineral particles and the implications for carcinogenic risk assessment. Inhal Toxicol. 34(1–2):24–38.
  • Korchevskiy AA, Wylie AG. 2022b. Asbestos exposure, lung fiber burden, and mesothelioma rates: mechanistic modelling for risk assessment. Comput Toxicol. 24:100249.
  • Mirabelli D, Calisti R, Barone A, Fornero E, Merletti F, Magnani C. 2008. Excess of mesotheliomas after exposure to chrysotile in Balangero, Italy. Occup Environ Med. 65(12):815–819.
  • Petriglieri JR, Bersani D, Laporte-Magoni C, Tribaudino M, Cavallo A, Salvioli-Mariani E, Turci F. 2020. Portable Raman spectrometer for in situ analysis of asbestos and fibrous minerals. Appl Sci. 11(1):287.
  • Pira E, Pelucchi C, Piolatto PG, Negri E, Bilei T, La Vecchia C. 2009. Mortality from cancer and other causes in the Balangero cohort of chrysotile asbestos miners. Occup Environ Med. 66(12):805–809.
  • Piolatto G, Negri E, La Vecchia C, Pira E, Decarli A, Peto J. 1990. An update of cancer mortality among chrysotile asbestos miners in Balangero, northern Italy. Br J Ind Med. 47(12):810–4. doi: 10.1136/oem.47.12.810.
  • Pira E, Romano C, Donato F, Pelucchi C, Vecchia CL, Boffetta P. 2017. Mortality from cancer and other causes among Italian chrysotile asbestos miners. Occup Environ Med. 74(8):558–563.
  • Pollastri S. 2016. The crystal structure of mineral fibres: 1. Chrysotile. Period Miner. 85:249–259.
  • Shao K, Shapiro AJ. 2018. A web-based system for Bayesian benchmark dose estimation. Environ Health Perspect. 126(1):017002.
  • Siegrist HG Jr, Wylie AG. 1980. Characterizing and discriminating the shape of asbestos particles. Environ Res. 23(2):348–361.
  • Silvestri S, Ferrante D, Giovannini A, Grassi F, Carofalo S, Ferrara R, Magnani C, Mirabelli D. 2020. Asbestos exposure of chrysotile miners and millers in Balangero, Italy. Ann Work Expo Health. 64(6):636–644.
  • Timbrell V. 1965. The inhalation of fibrous dusts. Ann N Y Acad Sci. 132(1):255–273.
  • Turci F, Tomatis M, Compagnoni R, Fubini B. 2009. Role of associated mineral fibres in chrysotile asbestos health effects: the case of balangeroite. Ann Occup Hyg. 53(5):491–497.
  • Turcotte DL. 1989. Fractals in geology and geophysics. Pure Appl Geophys. 131(1–2):171–196.
  • Wylie AG, Schweitzer P. 1982. The effects of sample preparation and measuring techniques on the shape and shape characterization of mineral particles: the case of wollastonite. Environ Res. 27(1):52–73.
  • Wylie AG, Shedd K, Taylor M. 1982. Measurement of the thickness of amphibole asbestos fibers with the scanning electron microscope and the transmission electron microscope. Microbeam Analysis Society Electron Microscope Society of America, Proceedings of the Annual Meeting; Jan; Washington (DC).
  • Wylie A. 1993. Modeling asbestos populations: a fractal approach. Can Miner. 31(2):437–446.
  • Wylie AG. 2016. Amphibole dusts: fibers, fragments and mesothelioma. Can Miner. 54(6):1403–1435.
  • Wylie AG, Korchevskiy A, Segrave A, Duane A. 2020. Modeling mesothelioma risk factors from amphibole fiber dimensionality: mineralogical and epidemiological perspective. J Appl Toxicol. 40(4):515–524.
  • Wylie A, Korchevskiy A, Van Orden D, Chatfield E. 2022. Discriminant analysis of asbestiform and non-asbestiform amphibole particles and its implications for toxicological studies. Comput. Toxicol. 23:100233.
  • Wylie A, Korchevskiy A. 2023. Dimensions of elongate mineral particles and cancer: a review. Environ Res. doi: 10.1016/j.envres.2022.114688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.