Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 35, 2023 - Issue 11-12
76
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Reconstruction of exposure to methylene diphenyl-4,4′-diisocyanate (MDI) aerosol using computational fluid dynamics, physiologically based toxicokinetics and statistical modeling

ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 285-299 | Received 24 Apr 2023, Accepted 10 Nov 2023, Published online: 29 Nov 2023

References

  • Banko AJ, Coletti F, Schiavazzi D, Elkins CJ, Eaton JK. 2015. Three-dimensional inspiratory flow in the upper and central human airways. Exp Fluids. 56(6):1–12. doi: 10.1007/s00348-015-1966-y.
  • Banko AJ, Coletti F, Elkins CJ, Eaton JK. 2016. Oscillatory flow in the human airways from the mouth through several bronchial generations. Int J Heat Fluid Flow. 61:45–57. doi: 10.1016/j.ijheatfluidflow.2016.04.006.
  • Bello A, Xue Y, Gore R, Woskie S, Bello D. 2019. Assessment and control of exposures to polymeric methylene diphenyl diisocyanate (pMDI) in spray polyurethane foam applicators. Int J Hyg Environ Health. 222(5):804–815. doi: 10.1016/j.ijheh.2019.04.014.
  • Bello D, Herrick CA, Smith TJ, Woskie SR, Streicher RP, Cullen MR, Liu Y, Redlich CA. 2007. Skin exposure to isocyanates: reasons for concern. Environ Health Perspect. 115(3):328–335. doi: 10.1289/ehp.9557.
  • Bhaskaran R, Collins L. 2002. Introduction to CFD basics. Cornell University-Sibley School of Mechanical and Aerospace Engineering; Ithaca, New York 14853, USA: p. 1–21. https://dragonfly.tam.cornell.edu/teaching/mae5230-cfd-intro-notes.pdf
  • Bischoff KB, Dedrick RL, Zaharko DS, Longstreth JA. 1971. Methotrexate pharmacokinetics. J Pharm Sci. 60(8):1128–1133. doi: 10.1002/jps.2600600803.
  • Bois FY. 2013. Bayesian inference. Computational Toxicology: Volume II, 597–636.
  • Bois FY. 2009. GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics. 25(11):1453–1454. doi: 10.1093/bioinformatics/btp162.
  • Budnik LT, Nowak D, Merget R, Lemiere C, Baur X. 2011. Elimination kinetics of diisocyanates after specific inhalative challenges in humans: mass spectrometry analysis, as a basis for biomonitoring strategies. J Occup Med Toxicol. 6(1):9. doi: 10.1186/1745-6673-6-9.
  • Cooper AB, Aggarwal M, Bartels MJ, Morriss A, Terry C, Lord GA, Gant TW. 2019. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data. Regul Toxicol Pharmacol. 102:1–12. doi: 10.1016/j.yrtph.2018.12.004.
  • Davies B, Morris T. 1993. Physiological parameters in laboratory animals and humans. Pharm Res. 10(7):1093–1095. doi: 10.1023/a:1018943613122.
  • Feng Y, Zhao J, Kleinstreuer C, Wang Q, Wang J, Wu DH, Lin J. 2018. An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. J Aerosol Sci. 123:185–207. doi: 10.1016/j.jaerosci.2018.05.010.
  • Feron V, Kittel B, Kuper C, Ernst H, Rittinghausen S, Muhle H, Koch W, Gamer A, Mallett A, Hoffmann H. 2001. Chronic pulmonary effects of respirable methylene diphenyl diisocyanate (MDI) aerosol in rats: combination of findings from two bioassays. Arch Toxicol. 75(3):159–175.
  • Garrido MA, Gerecke AC, Heeb N, Font R, Conesa JA. 2017. Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam. Chemosphere. 168:667–675. doi: 10.1016/j.chemosphere.2016.11.009.
  • Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences. Statist Sci. 7(4):457–472. doi: 10.1214/ss/1177011136.
  • Gledhill A, Wake A, Hext P, Leibold E, Shiotsuka R. 2005. Absorption, distribution, metabolism and excretion of an inhalation dose of [14C] 4, 4'-methylenediphenyl diisocyanate in the male rat. Xenobiotica. 35(3):273–292. doi: 10.1080/00498250500057591.
  • Hack CE, Chiu WA, Jay Zhao Q, Clewell HJ. 2006. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites. Regul Toxicol Pharmacol. 46(1):63–83. doi: 10.1016/j.yrtph.2006.05.012.
  • Haghnegahdar A, Zhao J, Kozak M, Williamson P, Feng Y. 2019. Development of a hybrid CFD-PBPK model to predict the transport of xenon gas around a human respiratory system to systemic regions. Heliyon. 5(4):e01461. doi: 10.1016/j.heliyon.2019.e01461.
  • Hoymann HG, Buschmann J, Heinrich U. 1995. Untersuchungen zur chronischen Toxizität/Kanzerogenität von 4, 4’-Methylendiphenyl-diisocyanat (MDI), Hannover, Germany: Fraunhofer-Institut für Toxikologie und Aerosolforschung.
  • Hsieh N-H, Bois FY, Tsakalozou E, Ni Z, Yoon M, Sun W, Klein M, Reisfeld B, Chiu WA. 2021. A Bayesian population physiologically based pharmacokinetic absorption modeling approach to support generic drug development: application to bupropion hydrochloride oral dosage forms. J Pharmacokinet Pharmacodyn. 48(6):893–908. doi: 10.1007/s10928-021-09778-5.
  • Hsieh N-H, Reisfeld B, Bois FY, Chiu WA. 2018. Applying a global sensitivity analysis workflow to improve the computational efficiencies in physiologically-based pharmacokinetic modeling. Front Pharmacol. 9:588. doi: 10.3389/fphar.2018.00588.
  • Islam MS, Paul G, Ong HX, Young PM, Gu YT, Saha SC. 2020. A review of respiratory anatomical development, air flow characterization and particle deposition. Int J Environ Res Public Health. 17(2):380. doi: 10.3390/ijerph17020380.
  • Johnstone A, Uddin M, Pollard A, Heenan A, Finlay WH. 2004. The flow inside an idealised form of the human extra-thoracic airway. Exp Fluids. 37(5):673–689. doi: 10.1007/s00348-004-0857-4.
  • Kenjereš S, Tjin JL. 2017. Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: a validation study. R Soc Open Sci. 4(12):170873. doi: 10.1098/rsos.170873.
  • Kimbell JS, Gross EA, Joyner DR, Godo MN, Morgan KT. 1993. Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. Toxicol Appl Pharmacol. 121(2):253–263. doi: 10.1006/taap.1993.1152.
  • Kimbell JS, Subramaniam RP. 2001. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhal Toxicol. 13(5):325–334. doi: 10.1080/08958370151126185.
  • Kumar B, Kumar Srivastav V, Jain A, Paul AR. 2019. Study of numerical schemes for the CFD simulation of human airways. Int J Integrat Eng. 11(8):32–40.
  • Linakis MW, Sayre RR, Pearce RG, Sfeir MA, Sipes NS, Pangburn HA, Gearhart JM, Wambaugh JF. 2020. Development and evaluation of a high throughput inhalation model for organic chemicals. J Expo Sci Environ Epidemiol. 30(5):866–877. doi: 10.1038/s41370-020-0238-y.
  • Luttringer O, Theil F, Poulin P, Schmitt‐Hoffmann AH, Guentert TW, Lavé T. 2003. Physiologically based pharmacokinetic (PBPK) modeling of disposition of epiroprim in humans. J Pharm Sci. 92(10):1990–2007. doi: 10.1002/jps.10461.
  • Morsi SAJ, Alexander AJ. 1972. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech. 55(02):193–208. doi: 10.1017/S0022112072001806.
  • Office of Environmental Health Hazard Assessment (OEHHA). 2016. Air toxics hot spots program, Methylene Diphenyl Diisocyanate Reference Exposure Levels (Monomer and Polymeric Forms).
  • Poulin P, Krishnan K. 1995. An algorithm for predicting tissue: blood partition coefficients of organic chemicals from n-octanol: water partition coefficient data. J Toxicol Environ Health. 46(1):117–129. 10.1080/15287399509532021.7666490
  • National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 7570, 4,4'-Diphenylmethane diisocyanate. Retrieved November 26, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/4_4_-Diphenylmethane-diisocyanate.
  • Redlich CA. 2010. Skin exposure and asthma: is there a connection? Proc Am Thorac Soc. 7(2):134–137. doi: 10.1513/pats.201002-025RM.
  • Reuzel PGJ, Arts JHE, Lomax LG, Kuijpers MHM, Kuper CF, Gembardt C, Feron VJ, Löser E. 1994. Chronic inhalation toxicity and carcinogenicity study of respirable polymeric methylene diphenyl diisocyanate (polymeric MDI) aerosol in rats. Toxicol Sci. 22(2):195–210. doi: 10.1093/toxsci/22.2.195.
  • Robert A, Ducos P, Francin JM, Marsan P. 2007. Biological monitoring of workers exposed to 4,4′-methylenediphenyl diisocyanate (MDI) in 19 French polyurethane industries. Int Arch Occup Environ Health. 80(5):412–422. doi: 10.1007/s00420-006-0150-3.
  • Scholten B, Westerhout J, Pronk A, Stierum R, Vlaanderen J, Vermeulen R, Jones K, Santonen T, Portengen L. 2023. A physiologically-based kinetic (PBK) model for work-related diisocyanate exposure: relevance for the design and reporting of biomonitoring studies. Environ Int. 174:107917. doi: 10.1016/j.envint.2023.107917.
  • Scholten B, Kenny L, Duca R-C, Pronk A, Santonen T, Galea KS, Loh M, Huumonen K, Sleeuwenhoek A, Creta M, et al. 2020. Biomonitoring for occupational exposure to diisocyanates: a systematic review. Ann Work Expo Health. 64(6):569–585. doi: 10.1093/annweh/wxaa038.
  • Schupp T, Plehiers PM. 2022. Absorption, distribution, metabolism, and excretion of methylene diphenyl diisocyanate and toluene diisocyanate: many similarities and few differences. Toxicol Ind Health. 38(9):500–528. doi: 10.1177/07482337211060133.
  • Sennbro CJ, Lindh CH, Ostin A, Welinder H, Jönsson BAG, Tinnerberg H. 2004. A survey of airborne isocyanate exposure in 13 Swedish polyurethane industries. Ann Occup Hyg. 48(5):405–414.
  • R Core Team. 2019. R: a language and environment for statistical computing (version 3.5. 2). Vienna, Austria: R Foundation for Statistical Computing.
  • Tinnerberg H, Broberg K, Lindh CH, Jönsson BAG. 2014. Biomarkers of exposure in Monday morning urine samples as a long-term measure of exposure to aromatic diisocyanates. Int Arch Occup Environ Health. 87(4):365–372. doi: 10.1007/s00420-013-0872-y.
  • WHO. 2010. Characterization and application of physiologically based pharmacokinetic models in risk assessment. Geneva, Switzerland: World Health Organization, International Programme on Chemical Safety,
  • Williams M, Todd GD, Pohl HR, Taylor J, Ingerman L, Carlson-Lynch H, Hard C, Citra M. 2018. Toxicological profile for toluene diisocyanate and methylenediphenyl diisocyanate. US Agency for Toxic Substances and Disease Registry. https://stacks.cdc.gov/view/cdc/58080/cdc_58080_DS1.pdf
  • Wisnewski AV, Xu L, Robinson E, Liu J, Redlich CA, Herrick CA. 2011. Immune sensitization to methylene diphenyl diisocyanate (MDI) resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses. J Occup Med Toxicol. 6(1):6. doi: 10.1186/1745-6673-6-6.
  • Wisnewski AV, Liu J. 2016. Immunochemical detection of the occupational allergen, methylene diphenyl diisocyanate (MDI), in situ. J Immunol Methods. 429:60–65. doi: 10.1016/j.jim.2015.12.008.
  • Wisnewski AV, Liu J, Redlich CA. 2010. Antigenic changes in human albumin caused by reactivity with the occupational allergen diphenylmethane diisocyanate. Anal Biochem. 400(2):251–258. doi: 10.1016/j.ab.2010.01.037.
  • Yang Y, Xu X, Georgopoulos PG. 2010. A Bayesian population PBPK model for multiroute chloroform exposure. J Expo Sci Environ Epidemiol. 20(4):326–341. doi: 10.1038/jes.2009.29.
  • Yoo S-J, Ito K. 2018. Numerical prediction of tissue dosimetry in respiratory tract using computer simulated person integrated with physiologically based pharmacokinetic–computational fluid dynamics hybrid analysis. Indoor Built Environ. 27(7):877–889. doi: 10.1177/1420326X17694475.
  • Zhang S, Wang Z, Chen J. 2019. Physiologically based toxicokinetics (PBTK) models for pharmaceuticals and personal care products in wild common carp (Cyprinus carpio). Chemosphere. 220:793–801. doi: 10.1016/j.chemosphere.2018.12.172.
  • Zhang X‐Y, Trame MN, Lesko LJ, Schmidt S. 2015. Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacometrics Syst Pharmacol. 4(2):69–79. doi: 10.1002/psp4.6.
  • Zhang Z, Kleinstreuer C. 2011. Computational analysis of airflow and nanoparticle deposition in a combined nasal–oral–tracheobronchial airway model. J Aerosol Sci. 42(3):174–194. doi: 10.1016/j.jaerosci.2011.01.001.
  • Zhang Z, Kleinstreuer C, Feng Y. 2012. Vapor deposition during cigarette smoke inhalation in a subject-specific human airway model. J Aerosol Sci. 53:40–60. doi: 10.1016/j.jaerosci.2012.05.008.
  • Zhang Z, Kleinstreuer C, Hyun S. 2012. Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model. J Aerosol Sci. 46:34–52. doi: 10.1016/j.jaerosci.2011.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.