Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 35, 2023 - Issue 13-14
265
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Adjuvant effect of inhaled particulate matter containing free radicals following house-dust mite induction of asthma in mice

, , , , , , , , , & show all
Pages 333-349 | Received 31 Aug 2023, Accepted 18 Nov 2023, Published online: 07 Dec 2023

References

  • American Lung Association. 2023. State of the air. https://www.lung.org/research/sota/key-findings/year-round-particle-pollution.
  • Aryal A, Noël A, Khachatryan L, Cormier SA, Chowdhury PH, Penn A, Dugas TR, Harmon AC. 2023. Environmentally persistent free radicals: methods for combustion generation, whole-body inhalation and assessing cardiopulmonary consequences. Environ Pollut. 334:122183. Epub ahead of print. PMID: 37442324. doi:10.1016/j.envpol.2023.122183.
  • Atkinson RW, Anderson HR, Sunyer J, Ayres J, Baccini M, Vonk JM, Boumghar A, Forastiere F, Forsberg B, Touloumi G, et al. 2001. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Am J Respir Crit Care Med. 164(10):1860–1866. PMID: 11734437. doi:10.1164/ajrccm.164.10.2010138.
  • Balakrishna S, Lomnicki S, McAvey KM, Cole RB, Dellinger B, Cormier SA. 2009. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity. Part Fibre Toxicol. 6(1):11. (doi:10.1186/1743-8977-6-11.
  • Balakrishna S, Saravia J, Thevenot P, Ahlert T, Lominiki S, Dellinger B, Cormier SA. 2011. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs. Part Fibre Toxicol. 8(1):11. PMID: 21388553; PMCID: PMC3061909. doi:10.1186/1743-8977-8-11.
  • Cahill KM, Johnson TK, Perveen Z, Schexnayder M, Xiao R, Heffernan LM, Langohr IM, Paulsen DB, Penn AL, Noël A. 2022. In utero exposures to mint-flavored JUUL aerosol impair lung development and aggravate house dust mite-induced asthma in adult offspring mice. Toxicology. 477:153272. Epub 2022 Jul 22. PMID: 35878681; PMCID: PMC9706914. doi:10.1016/j.tox.2022.153272.
  • Castañeda AR, Bein KJ, Smiley-Jewell S, Pinkerton KE. 2017. Fine particulate matter (PM2.5) enhances allergic sensitization in BALB/c mice. J Toxicol Environ Health A. 80(4):197–207. Epub 2017 May 11. PMID: 28494199; PMCID: PMC6159927. doi:10.1080/15287394.2016.1222920.
  • Chen Y, Jiao Z, Chen P, Fan L, Zhou X, Pu Y, Du W, Yin L. 2021. Short-term effect of fine particulate matter and ozone on non-accidental mortality and respiratory mortality in Lishui district, China. BMC Public Health. 21(1):1661. PMID: 34517854; PMCID: PMC8439017. doi:10.1186/s12889-021-11713-9.
  • Chen YW, Li SW, Lin CD, Huang MZ, Lin HJ, Chin CY, Lai YR, Chiu CH, Yang CY, Lai CH. 2020. Fine particulate matter exposure alters pulmonary microbiota composition and aggravates pneumococcus-induced lung pathogenesis. Front Cell Dev Biol. 8:570484. Epub 20201026. PubMed PMID: 33195201; PMCID: PMC7649221. doi:10.3389/fcell.2020.570484.
  • Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R. 2003. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem. 278(19):17036–17043. Epub 2003 Mar 6. PMID: 12624114. doi:10.1074/jbc.M210429200.
  • Choy D, Trivedi N, Dressen A, Babina M, Ahuja R, Yi T, Jackman J, Ji G, Hackney J, Orozco-Guerra L, et al. 2018. Tryptase loss-of-function mutations reduce tryptase expression and predict asthmatic response to anti-IgE therapy. Eur Respir J. 52(suppl 62):OA1652. doi:10.1183/13993003.congress-2018.OA1652.
  • Choy DF, Hart KM, Borthwick LA, Shikotra A, Nagarkar DR, Siddiqui S, Jia G, Ohri CM, Doran E, Vannella KM, et al. 2015. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med. 7(301):301ra129. PMID: 26290411. doi:10.1126/scitranslmed.aab3142.
  • Coban C, Igari Y, Yagi M, Reimer T, Koyama S, Aoshi T, Ohata K, Tsukui T, Takeshita F, Sakurai K, et al. 2010a. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe. 7(1):50–61. PMID: 20114028. doi:10.1016/j.chom.2009.12.003.
  • Coban C, Yagi M, Ohata K, Igari Y, Tsukui T, Horii T, Ishii KJ, Akira S. 2010b. The malarial metabolite hemozoin and its potential use as a vaccine adjuvant. Allergol Int. 59(2):115–124. Epub 2010 Apr 24. PMID: 20414048. doi:10.2332/allergolint.10-RAI-0194.
  • Collins TW, Grineski SE, Shaker Y, Mullen CJ. 2022. Communities of color are disproportionately exposed to long-term and short-term PM(2.5) in metropolitan America. Environ Res. 214(Pt 4):114038. Epub 20220810. doi:10.1016/j.envres.2022.114038.
  • Daigle CC, Chalupa DC, Gibb FR, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. 2003. Ultrafine particle deposition in humans during rest and exercise. Inhal Toxicol. 15(6):539–552. PMID: 12692730. doi:10.1080/08958370304468.
  • Darrah RJ, Mitchell AL, Campanaro CK, Barbato ES, Litman P, Sattar A, Hodges CA, Drumm ML, Jacono FJ. 2016. Early pulmonary disease manifestations in cystic fibrosis mice. J Cyst Fibros. 15(6):736–744. Epub 2016 May 24. PMID: 27231029; PMCID: PMC5121081. doi:10.1016/j.jcf.2016.05.002.
  • Dellinger B, Pryor WA, Cueto B, Squadrito GL, Deutsch WA. 2000. The role of combustion-generated radicals in the toxicity of PM2. 5. Proc Combust Inst. 28(2):2675–2681. doi:10.1016/S0082-0784(00)80687-6.
  • Dellinger B, Pryor WA, Cueto R, Squadrito GL, Hegde V, Deutsch WA. 2001. Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol. 14(10):1371–1377. doi:10.1021/tx010050x.
  • Diaz-Sanchez D, Garcia MP, Wang M, Jyrala M, Saxon A. 1999. Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J Allergy Clin Immunol. 104(6):1183–1188. doi:10.1016/s0091-6749(99)70011-4.PMID: 10588999.
  • Dylag AM, Haak J, Yee M, O'Reilly MA. 2020. Pulmonary mechanics and structural lung development after neonatal hyperoxia in mice. Pediatr Res. 87(7):1201–1210. Epub 2019 Dec 13. PMID: 31835269; PMCID: PMC7255955. doi:10.1038/s41390-019-0723-y.
  • Ferin J, Oberdörster G, Penney DP. 1992. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 6(5):535–542. PMID: 1581076. doi:10.1165/ajrcmb/6.5.535.
  • Franklin BA, Brook R, Pope IC. 2015. Air pollution and cardiovascular disease. Curr Probl Cardiol. 40(5):207–238. doi:10.1016/j.cpcardiol.2015.01.003.
  • Gehling W, Dellinger B. 2013. Environmentally persistent free radicals and their lifetimes in PM2. 5. Environ Sci Technol. 47(15):8172–8178. doi:10.1021/es401767m.
  • George L, Brightling CE. 2016. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 7(1):34–51. PMID: 26770668; PMCID: PMC4707428. doi:10.1177/2040622315609251.
  • Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D. 2004. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet. 363(9403):119–125. doi:10.1016/S0140-6736(03)15262-2.PMID: 14726165.
  • Gurczynski SJ, Moore BB. 2018. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol. 314(1):L6–L16. Epub 2017 Aug 31. PMID: 28860146; PMCID: PMC6048455. doi:10.1152/ajplung.00344.2017.
  • Hahn FF, Newton GJ, Bryant PL, Dagle G, Ragan H. 1977. In vitro phagocytosis of respirable-sized monodisperse particles by alveolar macrophages. In: Pulmonary Macrophages and Epithelial Cells: Proceedings of the Sixteenth Annual Hanford Biology Symposium, September 1976, Richland (WA) (Sanders C, Schneider R, Dagle G, Ragan H, eds). ERDA Symposium Series 43. Oak Ridge (TN): Energy Research and Development Administration, p. 424–436.
  • Hall SL, Baker T, Lajoie S, Richgels PK, Yang Y, McAlees JW, van Lier A, Wills-Karp M, Sivaprasad U, Acciani TH, et al. 2017. IL-17A enhances IL-13 activity by enhancing IL-13-induced signal transducer and activator of transcription 6 activation. J Allergy Clin Immunol. 139(2):462–471.e14. Epub 2016 Jun 11. PMID: 27417023; PMCID: PMC5149451. doi:10.1016/j.jaci.2016.04.037.
  • Harding JN, Gross M, Patel V, Potter S, Cormier SA. 2021. Association between particulate matter containing EPFRs and neutrophilic asthma through AhR and Th17. Respir Res. 22(1):275. PMID: 34702270; PMCID: PMC8549224. doi:10.1186/s12931-021-01867-w.
  • Harmon AC, Hebert VY, Cormier SA, Subramanian B, Reed JR, Backes WL, Dugas TR. 2018. Particulate matter containing environmentally persistent free radicals induces AhR-dependent cytokine and reactive oxygen species production in human bronchial epithelial cells. PLoS One. 13(10):e0205412. PMID: 30308017; PMCID: PMC6181347. doi:10.1371/journal.pone.0205412.
  • Harmon AC, Noël A, Subramanian B, Perveen Z, Jennings MH, Chen YF, Penn AL, Legendre K, Paulsen DB, Varner KJ, et al. 2021. Inhalation of particulate matter containing free radicals leads to decreased vascular responsiveness associated with an altered pulmonary function. Am J Physiol Heart Circ Physiol. 321(4):H667–H683. Epub 2021 Aug 20. PMID: 34415187; PMCID: PMC8794232. doi:10.1152/ajpheart.00725.2020.
  • Hashimoto K, Graham BS, Ho SB, Adler KB, Collins RD, Olson SJ, Zhou W, Suzutani T, Jones PW, Goleniewska K, et al. 2004. Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob-5. Am J Respir Crit Care Med. 170(3):306–312. Epub 2004 May 6. PMID: 15130904. doi:10.1164/rccm.200301-030OC.
  • Huang KL, Liu SY, Chou CC, Lee YH, Cheng TJ. 2017. The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS One. 12(2):e0173158. PMID: 28245275; PMCID: PMC5330505. doi:10.1371/journal.pone.0173158.
  • Huang SK, Zhang Q, Qiu Z, Chung KF. 2015. Mechanistic impact of outdoor air pollution on asthma and allergic diseases. J Thorac Dis. 7(1):23–33. Erratum in: J Thorac Dis. 2015 Oct;7(10):E521. PMID: 25694815; PMCID: PMC4311071. doi:10.3978/j.issn.2072-1439.2014.12.13.
  • Isgrò M, Bianchetti L, Marini MA, Bellini A, Schmidt M, Mattoli S. 2013. The C-C motif chemokine ligands CCL5, CCL11, and CCL24 induce the migration of circulating fibrocytes from patients with severe asthma. Mucosal Immunol. 6(4):718–727. Epub 2012 Nov 14. PMID: 23149666. doi:10.1038/mi.2012.109.
  • Jacob A, Hartz AM, Potin S, Coumoul X, Yousif S, Scherrmann JM, Bauer B, Declèves X. 2011. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels. Fluids Barriers CNS. 8(1):23. PMID: 21867498; PMCID: PMC3180256. doi:10.1186/2045-8118-8-23.
  • Jia H, Zhao S, Nulaji G, Tao K, Wang F, Sharma VK, Wang C. 2017. Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization. Environ Sci Technol. 51(11):6000–6008. doi:10.1021/acs.est.7b00599.
  • Jiang XQ, Mei XD, Feng D. 2016. Air pollution and chronic airway diseases: what should people know and do? J Thorac Dis. 8(1):E31–E40. PubMed PMID: WOS:000372098000004. doi:10.3978/j.issn.2072-1439.2015.11.50.
  • Keirsbulck M, Savouré M, Lequy E, Chen J, de Hoogh K, Vienneau D, Goldberg M, Zins M, Roche N, Nadif R, et al. 2023. Long-term exposure to ambient air pollution and asthma symptom score in the CONSTANCES cohort. Thorax. 78(1):9–15. Epub 2022 Mar 2. PMID: 35236762 doi:10.1136/thoraxjnl-2021-218344.
  • Kelley MA, Hebert VY, Thibeaux TM, Orchard MA, Hasan F, Cormier SA, Thevenot PT, Lomnicki SM, Varner KJ, Dellinger B, et al. 2013. Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. Chem Res Toxicol. 26(12):1862–1871. Epub 2013 Nov 13. PMID: 24224526; PMCID: PMC4112599. doi:10.1021/tx400227s.
  • Khachatryan L, Dellinger B. 2011. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions? Environ Sci Technol. 45(21):9232–9239. doi:10.1021/es201702q.
  • Kim D, McAlees JW, Bischoff LJ, Kaur D, Houshel LK, Gray J, Hargis J, Davis X, Dudas PL, Deshmukh H, et al. 2019. Combined administration of anti-IL-13 and anti-IL-17A at individually sub-therapeutic doses limits asthma-like symptoms in a mouse model of Th2/Th17 high asthma. Clin Exp Allergy. 49(3):317–330. Epub 2018 Nov 29. PMID: 30353972; PMCID: PMC6393183. doi:10.1111/cea.13301.
  • Kim SY, Kim KW, Lee SM, Lee DH, Park S, Son BS, Park MK. 2020. Overexpression of the aryl hydrocarbon receptor (AHR) mediates an oxidative stress response following injection of fine particulate matter in the temporal cortex. Oxid Med Cell Longev. 2020:6879738–6879739. PMID: 33488929; PMCID: PMC7803159. doi:10.1155/2020/6879738.
  • Kleinman MT, Sioutas C, Froines JR, Fanning E, Hamade A, Mendez L, Meacher D, Oldham M. 2007. Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice. Inhal Toxicol. 19:117–126. PMID: 17886059. doi:10.1080/08958370701495345.
  • Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. 2013. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models. Epidemiology. 24(4):555–561. PMID: 23676266; PMCID: PMC4372644. doi:10.1097/EDE.0b013e318294beaa.
  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A. 2002. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 65(20):1513–1530. PMID: 12396866. doi:10.1080/00984100290071649.
  • Kuroda E, Coban C, Ishii KJ. 2013. Particulate adjuvant and innate immunity: past achievements, present findings, and future prospects. Int Rev Immunol. 32(2):209–220. 10.3109/08830185.2013.773326.23570316
  • Kuźma Ł, Struniawski K, Pogorzelski S, Bachórzewska-Gajewska H, Dobrzycki S. 2020. Gender differences in association between air pollution and daily mortality in the capital of the green lungs of poland-population-based study with 2,953,000 person-years of follow-up. J Clin Med. 9(8):2351. PMID: 32717977; PMCID: PMC7464921. doi:10.3390/jcm9082351.
  • Lajoie S, Lewkowich IP, Suzuki Y, Clark JR, Sproles AA, Dienger K, Budelsky AL, Wills-Karp M. 2010. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol. 11(10):928–935. Epub 2010 Aug 29. PMID: 20802484; PMCID: PMC2943538. doi:10.1038/ni.1926.
  • Levy JI, Hammitt JK, Spengler JD. 2000. Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? Environ Health Perspect. 108(2):109–117. PMID: 10656850; PMCID: PMC1637882. doi:10.1289/ehp.00108109.
  • Li N, Harkema JR, Lewandowski RP, Wang M, Bramble LA, Gookin GR, Ning Z, Kleinman MT, Sioutas C, Nel AE. 2010. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. Am J Physiol Lung Cell Mol Physiol. 299(3):L374–83. Epub 2010 Jun 18. PMID: 20562226; PMCID: PMC2951067. doi:10.1152/ajplung.00115.2010.
  • Li N, Wang M, Bramble LA, Schmitz DA, Schauer JJ, Sioutas C, Harkema JR, Nel AE. 2009. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environ Health Perspect. 117(7):1116–1123. Epub 2009 Mar 11. PMID: 19654922; PMCID: PMC2717139. doi:10.1289/ehp.0800319.
  • Lomnicki S, Truong H, Vejerano E, Dellinger B. 2008. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter. Environ Sci Technol. 42(13):4982–4988. doi:10.1021/es071708h.
  • Mack SM, Madl AK, Pinkerton KE. 2019. Respiratory health effects of exposure to ambient particulate matter and bioaerosols. Compr Physiol. 10(1):1–20. PMID: 31853953; PMCID: PMC7553137. doi:10.1002/cphy.c180040.
  • Mäkelä MJ, Kanehiro A, Borish L, Dakhama A, Loader J, Joetham A, Xing Z, Jordana M, Larsen GL, Gelfand EW. 2000. IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization. Proc Natl Acad Sci USA. 97(11):6007–6012. PMID: 10811896; PMCID: PMC18549. doi:10.1073/pnas.100118997.
  • Matsumoto A, Hiramatsu K, Li Y, Azuma A, Kudoh S, Takizawa H, Sugawara I. 2006. Repeated exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic responses in mice. Clin Immunol. 121(2):227–235. Epub 2006 Sep 18. PMID: 16979384. doi:10.1016/j.clim.2006.08.003.
  • Morrissette N, Gold E, Aderem A. 1999. The macrophage–a cell for all seasons. Trends Cell Biol. 9(5):199–201. doi:10.1016/s0962-8924(99)01540-8.PMID: 10357607.
  • Mostafa DHD, Hemshekhar M, Piyadasa H, Altieri A, Halayko AJ, Pascoe CD, Mookherjee N. 2022. Characterization of sex-related differences in allergen house dust mite-challenged airway inflammation, in two different strains of mice. Sci Rep. 12(1):20837. PMID: 36460835; PMCID: PMC9718733. doi:10.1038/s41598-022-25327-7.
  • Nakajima H, Hirose K. 2010. Role of IL-23 and Th17 cells in airway inflammation in asthma. Immune Netw. 10(1):1–4. Epub 2010 Feb 28. PMID: 20228930; PMCID: PMC2837152. doi:10.4110/in.2010.10.1.1.
  • Noël A, Perveen Z, Xiao R, Hammond H, Le Donne V, Legendre K, Gartia MR, Sahu S, Paulsen DB, Penn AL. 2021. Mmp12 is upregulated by in utero second-hand smoke exposures and is a key factor contributing to aggravated lung responses in adult emphysema, asthma, and lung cancer mouse models. Front Physiol. 12:704401. PMID: 34912233; PMCID: PMC8667558. doi:10.3389/fphys.2021.704401.
  • Noël A, Xiao R, Perveen Z, Zaman HM, Rouse RL, Paulsen DB, Penn AL. 2016. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol. 13(1):10. PMID: 26911867; PMCID: PMC4766714. doi:10.1186/s12989-016-0122-z.
  • Percopo CM, Krumholz JO, Fischer ER, Kraemer LS, Ma M, Laky K, Rosenberg HF. 2019. Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. J Leukoc Biol. 105(1):151–161. Epub 2018 Oct 4. PMID: 30285291; PMCID: PMC6310085. doi:10.1002/JLB.3AB0318-090RR.
  • Pope IC. 1989. Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health. 79(5):623–628. doi:10.2105/ajph.79.5.623.
  • Pope IC. 2000. What do epidemiologic findings tell us about health effects of environmental aerosols? J Aerosol Med. 13(4):335–354. doi:10.1089/jam.2000.13.335.
  • Porter M, Karp M, Killedar S, Bauer SM, Guo J, Williams D, Breysse P, Georas SN, Williams MA. 2007. Diesel-enriched particulate matter functionally activates human dendritic cells. Am J Respir Cell Mol Biol. 37(6):706–719. Epub 2007 Jul 13. PMID: 17630318; PMCID: PMC2219549. doi:10.1165/rcmb.2007-0199OC.
  • Rice MB, Rifas-Shiman SL, Litonjua AA, Gillman MW, Liebman N, Kloog I, Luttmann-Gibson H, Coull BA, Schwartz J, Koutrakis P, et al. 2018. Lifetime air pollution exposure and asthma in a pediatric birth cohort. J Allergy Clin Immunol. 141(5):1932–1934.e7. Epub 2018 Feb 2. PMID: 29410045; PMCID: PMC6095200. doi:10.1016/j.jaci.2017.11.062.
  • Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. 2022. IL-17 cytokines and chronic lung diseases. Cells. 11(14):2132. PMID: 35883573; PMCID: PMC9318387. doi:10.3390/cells11142132.
  • San Martini FM, Hasenkopf CA, Roberts DC. 2015. Statistical analysis of PM2. 5 observations from diplomatic facilities in China. Atmos Environ. 110(2015):174–185. doi:10.1016/j.atmosenv.2015.03.060.
  • Saravia J, You D, Thevenot P, Lee GI, Shrestha B, Lomnicki S, Cormier SA. 2014. Early-life exposure to combustion-derived particulate matter causes pulmonary immunosuppression. Mucosal Immunol. 7(3):694–704. Epub 2013 Oct 30. PMID: 24172848; PMCID: PMC3999175. doi:10.1038/mi.2013.88.
  • Schwartz J. 2004. Air pollution and children’s health. Pediatrics. 113(Supplement_3):1037–1043. doi:10.1542/peds.113.S3.1037.
  • Steerenberg PA, Withagen CE, Dormans JA, van Dalen WJ, van Loveren H, Casee FR. 2003. Adjuvant activity of various diesel exhaust and ambient particles in two allergic models. J Toxicol Environ Health A. 66(15):1421–1439. PMID: 12857633. doi:10.1080/15287390306415.
  • Steerenberg PA, Withagen CE, van Dalen WJ, Dormans JA, Cassee FR, Heisterkamp SH, van Loveren H. 2004. Adjuvant activity of ambient particulate matter of different sites, sizes, and seasons in a respiratory allergy mouse model. Toxicol Appl Pharmacol. 200(3):186–200. PMID: 15504455. doi:10.1016/j.taap.2004.04.011.
  • Stevens T, Krantz QT, Linak WP, Hester S, Gilmour MI. 2008. Increased transcription of immune and metabolic pathways in naive and allergic mice exposed to diesel exhaust. Toxicol Sci. 102(2):359–370. doi:10.1093/toxsci/kfn006.
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect. 114(3):328–333. PMID: 16507453; PMCID: PMC1392224. doi:10.1289/ehp.8266.
  • Valavanidis A, Fiotakis K, Vlahogianni T, Bakeas EB, Triantafillaki S, Paraskevopoulou V, Dassenakis M. 2006. Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece). Chemosphere. 65(5):760–768. doi:10.1016/j.chemosphere.2006.03.052.
  • Vejerano EP, Rao G, Khachatryan L, Cormier SA, Lomnicki S. 2018. Environmentally persistent free radicals: insights on a new class of pollutants. Environ Sci Technol. 52(5):2468–2481. doi:10.1021/acs.est.7b04439.
  • Wang G, Xu Z, Wang R, Al-Hijji M, Salit J, Strulovici-Barel Y, Tilley AE, Mezey JG, Crystal RG. 2012. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Med Genomics. 5(1):21. PMID: 22676183; PMCID: PMC3443416. doi:10.1186/1755-8794-5-21.
  • Wang M, Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Hoffmann B, Fischer P, Houthuijs D, Nieuwenhuijsen M, Weinmayr G, et al. 2014. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects. Environ Int. 66:97–106. doi:10.1016/j.envint.2014.01.026.
  • Weiss K, Wanner N, Queisser K, Frimel M, Nunn T, Myshrall T, Sangwan N, Erzurum S, Asosingh K. 2021. Barrier housing and gender effects on allergic airway disease in a murine house dust mite model. Immunohorizons. 5(1):33–47. PMID: 33478982; PMCID: PMC9404370. doi:10.4049/immunohorizons.2000096.
  • Wu D, Zhou J, Bi H, Li L, Gao W, Huang M, Adcock IM, Barnes PJ, Yao X. 2014. CCL11 as a potential diagnostic marker for asthma? J Asthma. 51(8):847–854. Epub 2014 May 13. PMID: 24796647. doi:10.3109/02770903.2014.917659.
  • Xia T, Fang F, Montgomery S, Fang B, Wang C, Cao Y. 2021. Sex differences in associations of fine particulate matter with non-accidental deaths: an ecological time-series study. Air Qual Atmos Health. 14(6):863–872. doi:10.1007/s11869-021-00985-0.
  • Xia W, Bai J, Wu X, Wei Y, Feng S, Li L, Zhang J, Xiong G, Fan Y, Shi J, et al. 2014. Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway. PLoS One. 9(6):e98915. PMID: 24892823; PMCID: PMC4043856. doi:10.1371/journal.pone.0098915.
  • Xu X, Zhang J, Yang X, Zhang Y, Chen Z. 2020. The role and potential pathogenic mechanism of particulate matter in childhood asthma: a review and perspective. J Immunol Res. 2020:8254909–8254908. PMID: 32411804; PMCID: PMC7201641. doi:10.1155/2020/8254909.
  • Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B. 2015. Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environ Sci Technol. 50(2):694–700. doi:10.1021/acs.est.5b04042.
  • Yang W, Peters JI, Williams RO. 2008. 3rd. Inhaled nanoparticles–a current review. Int J Pharm. 356(1–2):239–247. Epub 2008 Feb 16. PMID: 18358652. doi:10.1016/j.ijpharm.2008.02.011.
  • Zein JG, Erzurum SC. 2015. Asthma is different in women. Curr Allergy Asthma Rep. 15(6):28. PMID: 26141573; PMCID: PMC4572514. doi:10.1007/s11882-015-0528-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.