Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 36, 2024 - Issue 1
127
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Establishing short-term occupational exposure limits (STELs) for sensory irritants using predictive and in silico respiratory rate depression (RD50) models

, , , , &
Pages 13-25 | Received 22 Aug 2023, Accepted 21 Dec 2023, Published online: 22 Jan 2024

References

  • Aakash A, Nabi D. 2023. Reliable prediction of sensory irritation threshold values of organic compounds using new models based on linear free energy relationships and GC × GC retention parameters. Chemosphere. 313:137339. eng. doi:10.1016/j.chemosphere.2022.137339.
  • Abraham M, Sánchez-Moreno R, Gil-Lostes J, Cometto m J, Cain W. 2010. Chapter 25, Physicochemical modeling of sensory irritation in humans and experimental animals. In: Toxicology of the nose and upper airways. San Diego (CA): UC San Diego; p. 376–389.
  • [ACGIH] American Conference of Governmental Industrial Hygenists. 2020. Operations manual threshold limit (TLV) for chemical substances committee. Last Revised: 2020 Nov 7. Cincinnati (OH): American Conference of Governmental Industrial Hygenists. [accessed 2023 Apr 17]. https://www.acgih.org/wp-content/uploads/2021/02/Operations-Manual-TLV-CS_11-7-2020.pdf.
  • Alarie Y, Nielsen G, Andonian-Haftvan J, Abraham M. 1995. Physicochemical properties of nonreactive volatile organic chemicals to estimate RD50: alternatives to animal studies. Toxicol Appl Pharmacol. 134(1):92–99. eng. doi:10.1006/taap.1995.1172.
  • Alarie Y, Schaper M, Nielsen G, Abraham M. 1996. Estimating the sensory irritating potency of airborne nonreactive volatile organic chemicals and their mixtures. SAR QSAR Environ Res. 5(3):151–165. eng. doi:10.1080/10629369608032986.
  • Alarie Y, Schaper M, Nielsen G, Abraham M. 1998. Structure-activity relationships of volatile organic chemicals as sensory irritants. Arch Toxicol. 72(3):125–140. eng. doi:10.1007/s002040050479.
  • Alarie Y. 1966. Irritating properties of airborne materials to the upper respiratory tract. Arch Environ Health. 13(4):433–449. eng. doi:10.1080/00039896.1966.10664593.
  • Alarie Y. 1973. Sensory irritation by airborne chemicals. CRC Crit Rev Toxicol. 2(3):299–363. eng. doi:10.3109/10408447309082020.
  • Alarie Y. 1981. Bioassay for evaluating the potency of airborne sensory irritants and predicting acceptable levels of exposure in man. Food Cosmet Toxicol. 19(5):623–626. eng. doi:10.1016/0015-6264(81)90513-7.
  • [ASTM] American Society for testing and materials. 1984. Standard test method for estimating sensory irritancy of airborne chemicals.
  • [ASTM] American Society for Testing and Materials. 2019. E981-19 standard test method for estimating sensory irritancy of airborne chemicals. Last Updated: 2019 Mar 11.
  • Berge W, Zwart A, Appelman L. 1986. Concentration—time mortality response relationship of irritant and systemically acting vapours and gases. J Hazard Mat’ls. 13(3):301–309. doi:10.1016/0304-3894(86)85003-8.
  • Bos P, Busschers M, Arts J. 2002. Evaluation of the sensory irritation test (Alarie test) for the assessment of respiratory tract irritation. J Occup Environ Med. 44(10):968–976. eng. doi:10.1097/00043764-200210000-00017.
  • Bos P, Zwart A, Reuzel P, Bragt P. 1991. Evaluation of the sensory irritation test for the assessment of occupational health risk. Crit Rev Toxicol. 21(6):423–450. eng. doi:10.3109/10408449209089882.
  • Brüning T, Bartsch R, Bolt H, Desel H, Drexler H, Gundert-Remy U, Hartwig A, Jäckh R, Leibold E, Pallapies D, et al. 2014. Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol. 88(10):1855–1879. eng. doi:10.1007/s00204-014-1346-z.
  • Dalton P. 2001. Evaluating the human response to sensory irritation: implications for setting occupational exposure limits. AIHA J. 62(6):723–729. eng. doi:10.1202/0002-8894(2001)062<0723:ETHRTS>2.0.CO;2.
  • Dearden J, Schüürmann G. 2003. Quantitative structure-property relationships for predicting henry’s law constant from molecular structure. Environ Toxicol Chem. 22(8):1755–1770. doi:10.1897/01-605.
  • Dearden J. 2003. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point. Environ Toxicol Chem. 22(8):1696–1709. eng. doi:10.1897/01-363.
  • Deveau M, Chen C, Johanson G, Krewski D, Maier A, Niven K, Ripple S, Schulte P, Silk J, Urbanus J, et al. 2015. The global landscape of occupational exposure limits–implementation of harmonization principles to guide limit selection. J Occup Environ Hyg. 12(sup1):S127–S144. eng. doi:10.1080/15459624.2015.1060327.
  • Dudek B, Short R, Brown M, Roloff M. 1992. Structure-activity relationship of a series of sensory irritants. J Toxicol Environ Health. 37(4):511–518. eng. doi:10.1080/15287399209531689.
  • [EC] European Commission. 2017. Directorate-general for employment, social affairs and inclusion, methodology for derivation of occupational exposure limits of chemical agents – the general decision-making framework of the scientific committee on occupational exposure limits (SCOEL), Publications Office. [accessed 2023 Mar 25]. doi: https://doi.org/10.2767/435199.
  • [EPA] Environmental Protection Agency. 2001. Standard operating procedures for developing acute exposure guideline levels for hazardous chemicals. Washington (DC): U.S. Environmental Protection Agency. [accessed 2023 Mar 25] https://www.epa.gov/sites/default/files/2015-09/documents/sop_final_standing_operating_procedures_2001.pdf.
  • Ernstgård L, Iregren A, Sjögren B, Johanson G. 2006. Acute effects of exposure to vapours of acetic acid in humans. Toxicol Lett. 165(1):22–30. doi:10.1016/j.toxlet.2006.01.010.
  • Ferguson J, Clark A. 1939. The use of chemical potentials as indices of toxicity. Proc R Soc London Ser B – Biol Sci. 127(848):387–404.
  • Frank E, Haber L, Genter M, Maier A. 2018. Defining molecular initiating events of airway sensory irritation in support of predictive testing approaches. Appl in Vitro Toxicol. 4(4)
  • Gaffney S, Paustenbach DJ. 2007. A proposed approach for setting occupational exposure limits for sensory irritants based on chemosensory models. Ann Occup Hyg. 51(4):345–356. eng.
  • Gagnaire F, Azim S, Simon P, Cossec B, Bonnet P, De Ceaurriz J. 1993. Sensory and pulmonary irritation of aliphatic amines in mice: a structure-activity relationship study. J Appl Toxicol. 13(2):129–135. eng. doi:10.1002/jat.2550130210.
  • Gupta S, Basant N, Singh K. 2015. Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose. Ecotoxicology. 24(4):873–886. eng. doi:10.1007/s10646-015-1431-y.
  • Hansen L, Nielsen G. 1994. Sensory irritation, pulmonary irritation and structure-activity relationships of alcohols. Toxicology. 88(1–3):81–99. eng. doi:10.1016/0300-483x(94)90112-0.
  • Hougaard KS, Jensen ACØ, Sørli JB. 2023. Correlation between inhibition of lung surfactant function in vitro and rapid reduction in tidal volume following exposure to plant protection products in mice. Toxicology. 492:153546. doi:10.1016/j.tox.2023.153546.
  • Jarabek AM. 1995. Considerations of temporal toxicity challenges current default assumptions. Inhalation Toxicol. 7(6):927–946. doi:10.3109/08958379509012801.
  • Krewski D, Acosta D, Andersen M, Anderson H, Bailar J, Boekelheide K, Brent R, Charnley G, Cheung V, Green S, et al. 2010. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 13(2–4):51–138. doi:10.1080/10937404.2010.483176.
  • Krieger S, Auernhammer T, Hotchkiss J, Wilson D. 2021. Mechanistic profiling of inhalation sensory irritants with a computational model for transient receptor potential vanilloid subfamily type 1. Appl in Vitro Toxicol. 7(4)
  • Kuwabara Y, Alexeeff G, Broadwin R, Salmon A. 2007. Evaluation and application of the RD50 for determining acceptable exposure levels of airborne sensory irritants for the general public. Environ Health Perspect. 115(11):1609–1616. eng. doi:10.1289/ehp.9848.
  • Leung H, Paustenbach D. 1990. Organic acids and bases: review of toxicological studies. Am J Ind Med. 18(6):717–735. eng. doi:10.1002/ajim.4700180610.
  • Luan F, Ma W, Zhang X, Zhang H, Liu M, Hu Z, Fan B. 2006. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals. Chemosphere. 63(7):1142–1153. eng. doi:10.1016/j.chemosphere.2005.09.053.
  • Macina O, Klopman G, Rosenkranz H. 1997. Structural basis of sensory irritation. Inhal Toxicol. 9(5):465–476.
  • Nielsen G, Abraham M, Hansen LF, Hammer M, Cooksey C, Andonian-Haftvan J, Alarie Y. 1996. Sensory irritation mechanisms investigated from model compounds: trifluoroethanol, hexafluoroisopropanol and methyl hexafluoroisopropyl ether. Arch Toxicol. 70(6):319–328. eng. doi:10.1007/s002040050281.
  • Nielsen G, Alarie Y. 1982. Sensory irritation, pulmonary irritation, and respiratory stimulation by airborne benzene and alkylbenzenes: prediction of safe industrial exposure levels and correlation with their thermodynamic properties. Toxicol Appl Pharmacol. 65(3):459–477. eng. doi:10.1016/0041-008x(82)90391-x.
  • Nielsen G, Vinggaard A. 1988. Sensory irritation and pulmonary irritation of C3–C7 n-alkylamines: mechanisms of receptor activation. Pharmacol Toxicol. 63(4):293–304. doi:10.1111/j.1600-0773.1988.tb00957.x.
  • Nielsen G, Wolkoff P, Alarie Y. 2007. Sensory irritation: risk assessment approaches. Regul Toxicol Pharmacol. 48(1):6–18. eng. doi:10.1016/j.yrtph.2006.11.005.
  • Nielsen G, Wolkoff P. 2017. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: a systematic approach. Regul Toxicol Pharmacol. 90:308–317. eng. doi:10.1016/j.yrtph.2017.09.015.
  • Nielsen G, Yamagiwa M. 1989. Structure-activity relationships of airway irritating aliphatic amines. Receptor activation mechanisms and predicted industrial exposure limits. Chem Biol Interact. 71(2–3):223–244. eng. doi:10.1016/0009-2797(89)90037-9.
  • Nielsen GD, Bakbo JC, Holst E. 1984. Sensory irritation and pulmonary irritation by airborne AUyl acetate, auyl alcohol, and allyl ether compared to acrolein. Acta Pharmacol Toxicol (Copenh). 54(4):292–298. doi:10.1111/j.1600-0773.1984.tb01933.x.
  • [NIOSH] National Institute for Occupational Safety and Health. 2013. Current intelligence bulletin 66: derivation of immediately dangerous to life or health (IDLH) values. Washington (DC): U.S. Department of Health and Human Services; Centers for Disease Control, National Institute for Occupational Safety and Health. [accessed 2023 Mar 25] file:///C:/Users/vballantyne/Downloads/cdc_20861_DS1.pdf.
  • [NRC] National Research Council. 2007. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, DC: National Academies Press.
  • [NTP] National Toxicology Program. 2015. Annual report for fiscal year 2015.
  • OSHA. 2006. OSHA annotated table Z-1. Permissible exposure limits - annotated tables. Washington (DC): Occupational Safety and Health Administration. [accessed 2023 Mar 15]. https://www.osha.gov/annotated-pels/table-z-1#notes.
  • Raevsky O, Grigor’ev V, Liplavskaya E, Worth A. 2011. Prediction of acute rodent toxicity on the basis of chemical structure and physicochemical similarity. Mol Inform. 30(2–3):267–275. doi:10.1002/minf.201000145.
  • Schaper M. 1993. Development of a database for sensory irritants and its use in establising occupational exposure limits. Am Ind Hyg Assoc J. 54(9):488–544. doi:10.1080/15298669391355017.
  • Shusterman D, Matovinovic E, Salmon A. 2006. Does Haber’s law apply to human sensory irritation? Inhal Toxicol. 18(7):457–471. eng. doi:10.1080/08958370600602322.
  • Steinhagen W, Barrow C. 1984. Sensory irritation structure-activity study of inhaled aldehydes in B6C3F1 and Swiss-Webster mice. Toxicol Appl Pharmacol. 72(3):495–503. doi:10.1016/0041-008x(84)90126-1.
  • Talavera K, Startek J, Alvarez-Collazo J, Boonen B, Alpizar Y, Sanchez A, Naert R, Nilius B. 2020. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol Rev. 100(2):725–803. doi:10.1152/physrev.00005.2019.
  • Veith G, Petkova E, Wallace K. 2009. A baseline inhalation toxicity model for narcosis in mammals. SAR QSAR Environ Res. 20(5–6):567–578. doi:10.1080/10629360903278669.
  • Vincent M, Bernstein JA, Basketter D, LaKind J, Dotson G, Maier A. 2017. Chemical-induced asthma and the role of clinical, toxicological, exposure and epidemiological research in regulatory and hazard characterization approaches. Regul Toxicol Pharmacol. 90:126–132. eng. doi:10.1016/j.yrtph.2017.08.018.
  • Wehr M, Sarang S, Rooseboom M, Boogaard P, Karwath A, Escher S. 2022. RespiraTox - Development of a QSAR model to predict human respiratory irritants. Regul Toxicol Pharmacol. 128:105089. eng. doi:10.1016/j.yrtph.2021.105089.
  • Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York (NY): Springer-Verlag; [accessed 2023 Mar 25]. https://ggplot2.tidyverse.org.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.