Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 36, 2024 - Issue 1
343
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of microparticle transport and deposition in nasal cavity of three different age groups

, , , , , & show all
Pages 44-56 | Received 24 Apr 2023, Accepted 23 Jan 2024, Published online: 11 Feb 2024

References

  • Abouali O, Keshavarzian E, Farhadi Ghalati P, Faramarzi A, Ahmadi G, Bagheri MH. 2012. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery. Respir Physiol Neurobiol. 181(3):335–345. doi: 10.1016/j.resp.2012.03.002.
  • Bahmanzadeh H, Abouali O, Faramarzi M, Ahmadi G. 2015. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery. Comput Biol Med. 61:8–18. doi: 10.1016/j.compbiomed.2015.03.015.
  • Bailie N, Hanna B, Watterson J, Gallagher G. 2006. An overview of numerical modelling of nasal airflow. Rhinology. 44(1):53–57.
  • Bailie N, Hanna B, Watterson J, Gallagher G. 2009. A model of airflow in the nasal cavities: implications for nasal air conditioning and epistaxis. Am J Rhinol Allergy. 23(3):244–249. doi: 10.2500/ajra.2009.23.3308.
  • Bass K, Boc S, Hindle M, Dodson K, Longest W. 2019. High-efficiency nose-to-lung aerosol delivery in an infant: development of a validated computational fluid dynamics method. J Aerosol Med Pulm Drug Deliv. 32(3):132–148. doi: 10.1089/jamp.2018.1490.
  • Belanger K, Beckett W, Triche E, Bracken MB, Holford T, Ren P, McSharry J, Gold DR, Platts-Mills TAE, Leaderer BP. 2003. Symptoms of wheeze and persistent cough in the first year of life: associations with indoor allergens, air contaminants, and maternal history of asthma. Am J Epidemiol. 158(3):195–202. doi: 10.1093/aje/kwg148.
  • Biagini JM, LeMasters GK, Ryan PH, Levin L, Reponen T, Bernstein DI, Villareal M, Khurana Hershey GK, Burkle J, Lockey J. 2006. Environmental risk factors of rhinitis in early infancy. Pediatr Allergy Immunol. 17(4):278–284. doi: 10.1111/j.1399-3038.2006.00386.x.
  • Brüning J, Hildebrandt T, Heppt W, Schmidt N, Lamecker H, Szengel A, Amiridze N, Ramm H, Bindernagel M, Zachow S, et al. 2020. Characterization of the airflow within an average geometry of the healthy human nasal cavity. Sci Rep. 10(1):3755. doi: 10.1038/s41598-020-60755-3.
  • Cal IR, Cercos-Pita JL, Duque D. 2017. The incompressibility assumption in computational simulations of nasal airflow. Comput Methods Biomech Biomed Eng. 20(8):853–868. doi: 10.1080/10255842.2017.1307343.
  • Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C, et al. 2017. A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ. 579:1000–1034. doi: 10.1016/j.scitotenv.2016.11.025.
  • Cherobin GB, Voegels RL, Gebrim EMMS, Garcia GJM. 2018. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLOS One. 13(11):e0207178. doi: 10.1371/journal.pone.0207178.
  • Contencin P, Gumpert L, Sleiman J, Possel L, De Gaudemar I, Adamsbaum C. 1999. Nasal fossae dimensions in the neonate and young infant: a computed tomographic scan study. Arch Otolaryngol Head Neck Surg. 125(7):777–781. doi: 10.1001/archotol.125.7.777.
  • Corda JV, Shenoy BS, Ahmad KA, Lewis L, K P, Khader SMA, Zuber M. 2022. Nasal airflow comparison in neonates, infant and adult nasal cavities using computational fluid dynamics. Comput Methods Programs Biomed. 214:106538. doi: 10.1016/j.cmpb.2021.106538.
  • Deng Q, Ou C, Chen J, Xiang Y. 2018. Particle deposition in tracheobronchial airways of an infant, child and adult. Sci Total Environ. 612:339–346. doi: 10.1016/j.scitotenv.2017.08.240.
  • Di Cicco M, Kantar A, Masini B, Nuzzi G, Ragazzo V, Peroni D. 2021. Structural and functional development in airways throughout childhood: children are not small adults. Pediatr Pulmonol. 56(1):240–251. doi: 10.1002/ppul.25169.
  • Dickison AE. 1987. The normal and abnormal pediatric upper airway. Recognition and management of obstruction. Clin Chest Med. 8(4):583–596. doi: 10.1016/S0272-5231(21)00777-2.
  • Douwes J, Thorne P, Pearce N, Heederik D. 2003. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 47(3):187–200. doi: 10.1093/annhyg/meg032.
  • Dykewicz MS, Hamilos DL. 2010. Rhinitis and sinusitis. J Allergy Clin Immunol. 125(2 Suppl 2):S103–S115. doi: 10.1016/j.jaci.2009.12.989.
  • Farhadi Ghalati P, Keshavarzian E, Abouali O, Faramarzi A, Tu J, Shakibafard A. 2012. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Comput Biol Med. 42(1):39–49. doi: 10.1016/j.compbiomed.2011.10.005.
  • Hofmann W. 1982. Mathematical model for the postnatal growth of the human lung. Respir Physiol. 49(1):115–129. doi: 10.1016/0034-5687(82)90106-2.
  • Hsu D-J, Chuang M-H. 2012. In-vivo measurements of micrometer-sized particle deposition in the nasal cavities of Taiwanese adults. Aerosol Sci Technol. 46(6):631–638. doi: 10.1080/02786826.2011.652749.
  • Illum L. 2000. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 11(1):1–18. doi: 10.1016/s0928-0987(00)00087-7.
  • Inthavong K, Ma J, Shang Y, Dong J, Chetty ASR, Tu J, Frank-Ito D. 2019. Geometry and airflow dynamics analysis in the nasal cavity during inhalation. Clin Biomech. 66:97–106. doi: 10.1016/j.clinbiomech.2017.10.006.
  • Inthavong K, Tu J, Heschl C. 2011. Micron particle deposition in the nasal cavity using the v2–f model. Comput Fluids. 51(1):184–188. doi: 10.1016/j.compfluid.2011.08.013.
  • Islam MS, Larpruenrudee P, Hossain SI, Rahimi-Gorji M, Gu Y, Saha SC, Paul G. 2021. Polydisperse aerosol transport and deposition in upper airways of age-specific lung. Int J Environ Res Public Health. 18(12):6239. doi: 10.3390/ijerph18126239.
  • Jeong KY. 2016. Physical and biochemical characteristics of allergens. Allergy Asthma Respir Dis. 4(3):157–166. doi: 10.4168/aard.2016.4.3.157.
  • Kelly JT, Asgharian B, Kimbell JS, Wong BA. 2004a. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: inertial regime particles. Aerosol Sci Technol. 38(11):1063–1071. doi: 10.1080/027868290883360.
  • Kelly JT, Asgharian B, Kimbell JS, Wong BA. 2004b. Particle deposition in human nasal airway replicas manufactured by different methods. Part II: ultrafine particles. Aerosol Sci Technol. 38(11):1072–1079. doi: 10.1080/027868290883432.
  • Kelly JT, Prasad AK, Wexler AS. 2000. Detailed flow patterns in the nasal cavity. J Appl Physiol. 89(1):323–337. doi: 10.1152/jappl.2000.89.1.323.
  • Kyung SY, Jeong SH. 2020. Particulate-matter related respiratory diseases. Tuberc Respir Dis. 83(2):116–121. doi: 10.4046/trd.2019.0025.
  • Lim ZF, Rajendran P, Musa MY, Lee CF. 2021. Nasal airflow of patient with septal deviation and allergy rhinitis. Vis Comput Ind Biomed Art. 4(1):14. doi: 10.1186/s42492-021-00080-2.
  • Luczynska CM, Li Y, Chapman MD, Platts-Mills, T, AE. 1990. Airborne concentrations and particle size distribution of allergen derived from domestic cats (Felis domesticus): measurements using cascade impactor, liquid impinger, and a two-site monoclonal antibody assay for Fel d I. Am Rev Respir Dis. 141(2):361–367. doi: 10.1164/ajrccm/141.2.361.
  • Mercer MJ, van der Linde GP, Joubert G. 2002. Rhinitis (allergic and nonallergic) in an atopic pediatric referral population in the grasslands of inland South Africa. Ann Allergy Asthma Immunol. 89(5):503–512. doi: 10.1016/S1081-1206(10)62089-3.
  • Morsi SA, Alexander AJ. 1972. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech. 55(02):193. doi: 10.1017/S0022112072001806.
  • Nasir ZA, Colbeck I, Sultan S, Ahmed S. 2012. Bioaerosols in residential micro-environments in low income countries: a case study from Pakistan. Environ Pollut. 168:15–22. doi: 10.1016/j.envpol.2012.03.047.
  • Ounis H, Ahmadi G, McLaughlin JB. 1991. Brownian diffusion of submicrometer particles in the viscous sublayer. J Colloid Interface Sci. 143(1):266–277. doi: 10.1016/0021-9797(91)90458-K.
  • Platts-Mills TA. 1998. The role of allergens in allergic airway disease. J Allergy Clin Immunol. 101(2 Pt 2):S364–S366. doi: 10.1016/s0091-6749(98)70221-0.
  • Richter D. 2011. [Allergic rhinitis in children]. Acta Med Croatica. 65(2):163–168.
  • Salati H, Khamooshi M, Vahaji S, Christo FC, Fletcher DF, Inthavong K. 2021. N95 respirator mask breathing leads to excessive carbon dioxide inhalation and reduced heat transfer in a human nasal cavity. Phys Fluids. 33(8):081913. doi: 10.1063/5.0061574.
  • Salvaggio JE. 1994. Inhaled particles and respiratory disease. J Allergy Clin Immunol. 94(2):304–309. doi: 10.1053/ai.1994.v94.a56009.
  • Schroeter JD, Garcia G, JM, Kimbell JS. 2011. Effects of surface smoothness on inertial particle deposition in human nasal models. J Aerosol Sci. 42(1):52–63. doi: 10.1016/j.jaerosci.2010.11.002.
  • Schroeter JD, Tewksbury EW, Wong BA, Kimbell JS. 2015. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model. J Aerosol Med Pulm Drug Deliv. 28(1):20–29. doi: 10.1089/jamp.2013.1084.
  • Shang YD, Inthavong K, Tu JY. 2015. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput Fluids. 114:141–150. doi: 10.1016/j.compfluid.2015.02.020.
  • Stazi M-A, Sampogna F, Montagano G, Grandolfo ME, Couilliot M-F, Annesi-Maesano I. 2002. Early life factors related to clinical manifestations of atopic disease but not to skin-prick test positivity in young children. Pediatr Allergy Immunol. 13(2):105–112. doi: 10.1034/j.1399-3038.2002.00070.x.
  • Stuart BO. 1984. Deposition and clearance of inhaled particles. Environ Health Perspect. 55:369–390. doi: 10.1289/ehp.8455369.
  • Valerian Corda J, Emmanuel J, Nambiar S, K P, Zuber M. 2023. Airflow patterns and particle deposition in a pediatric nasal upper airway following a rapid maxillary expansion: computational fluid dynamics study. Cogent Eng. 10(1):2158614. doi: 10.1080/23311916.2022.2158614.
  • Valerian Corda J, Satish Shenoy B, Arifin Ahmad K, Lewis L, K P, Rao A, Zuber M. 2023. Micro- and nanoparticle transport and deposition in a realistic neonatal and infant nasal upper airway. Int J Modell Simul. doi: 10.1080/02286203.2022.2164155.
  • Van Strien J, Shrestha K, Gabriel S, Lappas P, Fletcher DF, Singh N, Inthavong K. 2021. Pressure distribution and flow dynamics in a nasal airway using a scale resolving simulation. Phys Fluids. 33(1):011907. doi: 10.1063/5.0036095.
  • Wang DY, Lee HP, Gordon BR. 2012. Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin Exp Otorhinolaryngol. 5(4):181–187. doi: 10.3342/ceo.2012.5.4.181.
  • Wen J, Inthavong K, Tu J, Wang S. 2008. Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol. 161(2):125–135. doi: 10.1016/j.resp.2008.01.012.
  • Wolfensberger M. 2002. Anti-inflammatory and surgical therapy of olfactory disorders related to sino-nasal disease. Chem Senses. 27(7):617–622. doi: 10.1093/chemse/27.7.617.
  • Xi J, Berlinski A, Zhou Y, Greenberg B, Ou X. 2012. Breathing resistance and ultrafine particle deposition in nasal–laryngeal airways of a newborn, an infant, a child, and an adult. Ann Biomed Eng. 40(12):2579–2595. doi: 10.1007/s10439-012-0603-7.
  • Yarragudi SB, Kumar H, Jain R, Tawhai M, Rizwan S. 2020. Olfactory targeting of microparticles through inhalation and bi-directional airflow: effect of particle size and nasal anatomy. J Aerosol Med Pulm Drug Deliv. 33(5):258–270. doi: 10.1089/jamp.2019.1549.
  • Zamankhan P, Ahmadi G, Wang Z, Hopke PK, Cheng Y-S, Su WC, Leonard D. 2006. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Sci Technol. 40(6):463–476. doi: 10.1080/02786820600660903.
  • Zhao K, Jiang J. 2014. What is normal nasal airflow? A computational study of 22 healthy adults: normal human nasal airflow. Int Forum Allergy Rhinol. 4(6):435–446. doi: 10.1002/alr.21319.
  • Zhu JH, Lee HP, Lim KM, Lee SJ, Wang DY. 2011. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation. Respir Physiol Neurobiol. 175(1):62–69. doi: 10.1016/j.resp.2010.09.008.
  • Zubair M, Ahmad KA, Abdullah M, Sufian SF. 2015. Characteristic airflow patterns during inspiration and expiration: experimental and numerical investigation. J Med Biol Eng. 35(3):387–394. doi: 10.1007/s40846-015-0037-4.
  • Zubair M, Riazuddin VN, Abdullah MZ, Ismail R, Shuaib IL, Ahmad KA. 2013. Computational fluid dynamics study of the effect of posture on airflow characteristics inside the nasal cavity. Asian Biomedicine. 7(6):835–840.
  • Zubair M, Riazuddin VN, Abdullah MZ, Rushdan I, Shuaib IL, Ahmad KA. 2013. Computational fluid dynamics study of pull and plug flow boundary condition on nasal airflow. Biomed Eng Appl Basis Commun. 25(4):1350044. doi: 10.4015/S1016237213500440.
  • Zuber M, Valerian Corda J, Ahmadi M, Satish Shenoy B, Anjum Badruddin I, E. Anqi A, Arifin Ahmad K, M. Abdul Khader S, Lewis L, Anas Khan M, et al. 2020. Investigation of coronavirus deposition in realistic human nasal cavity and impact of social distancing to contain COVID-19: a computational fluid dynamic approach. Comput Model Eng Sci. 125(3):1185–1199. doi: 10.32604/cmes.2020.015015.