Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 36, 2024 - Issue 3
45
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Notoginsenoside R1 restrains the proliferation and migration of airway smooth muscle cells isolated from rats with chronic obstructive pulmonary disease

, , , , &
Pages 145-157 | Received 16 Oct 2023, Accepted 10 Feb 2024, Published online: 27 Feb 2024

References

  • Acosta-Martinez M, Cabail M. 2022. The PI3K/Akt pathway in meta-inflammation. Int J Mol Sci. 23(23):15330. doi: 10.3390/ijms232315330.
  • Ahmadi A, Eftekhari M, Mazloom Z, Masoompour M, Fararooei M, Eskandari M, Mehrabi S, Bedeltavana A, Famouri M, Zare M, et al. 2020. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: a single-blind, randomized clinical trial. Respir Res. 21(1):216. doi: 10.1186/s12931-020-01466-1.
  • Aubier M, Thabut G, Hamidi F, Guillou N, Brard J, Dombret M, Borensztajn K, Aitilalne B, Poirier I, Roland-Nicaise P, et al. 2016. Airway smooth muscle enlargement is associated with protease-activated receptor 2/ligand overexpression in patients with difficult-to-control severe asthma. J Allergy Clin Immunol. 138(3):729–739.e711. doi: 10.1016/j.jaci.2015.12.1332.
  • Cao B, Xu Z, Liu C, Hu J, Zhu Z, Li J, Zhu G, Li F. 2021. Protective effects of notoginsenoside R1 on acute lung injury in rats with sepsis. Ann Transl Med. 9(12):996–996. doi: 10.21037/atm-21-2496.
  • Chen L, Ge Q, Tjin G, Alkhouri H, Deng L, Brandsma C, Adcock I, Timens W, Postma D, Burgess J, et al. 2014. Effects of cigarette smoke extract on human airway smooth muscle cells in COPD. Eur Respir J. 44(3):634–646. doi: 10.1183/09031936.00171313.
  • Chi Y, Di Q, Han G, Li M, Sun B. 2019. Mir-29b mediates the regulation of Nrf2 on airway epithelial remodeling and Th1/Th2 differentiation in COPD rats. Saudi J Biol Sci. 26(8):1915–1921. doi: 10.1016/j.sjbs.2019.07.011.
  • Cong S, Xiang L, Yuan X, Bai D, Zhang X. 2019. Notoginsenoside R1 up-regulates microRNA-132 to protect human lung fibroblast MRC-5 cells from lipopolysaccharide-caused injury. Int Immunopharmacol. 68:137–144. doi: 10.1016/j.intimp.2018.12.065.
  • Fang H, Yang S, Luo Y, Zhang C, Rao Y, Liu R, Feng Y, Yu J. 2018. Notoginsenoside R1 inhibits vascular smooth muscle cell proliferation, migration and neointimal hyperplasia through PI3K/Akt signaling. Sci Rep. 8(1):7595. doi: 10.1038/s41598-018-25874-y.
  • Gao Z, Jing J, Liu Y. 2020. Xiaoqinglong decoction (a traditional Chinese medicine) combined conventional treatment for acute exacerbation of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Medicine (Baltimore). 99(14):e19571. doi: 10.1097/MD.0000000000019571.
  • Gosens R, Rieks D, Meurs H, Ninaber D, Rabe K, Nanninga J, Kolahian S, Halayko A, Hiemstra P, Zuyderduyn S. 2009. Muscarinic M3 receptor stimulation increases cigarette smoke-induced IL-8 secretion by human airway smooth muscle cells. Eur Respir J. 34(6):1436–1443. doi: 10.1183/09031936.00045209.
  • Guo S, Xi X, Li J. 2019. Notoginsenoside R1: a systematic review of its pharmacological properties. Pharmazie. 74(11):641–647.
  • Gür Z, Çalışkan B, Banoglu E. 2018. Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur J Med Chem. 153:34–48. doi: 10.1016/j.ejmech.2017.07.019.
  • Hui-li G. 2008. Assessment on rat model of accumulation of cold and harmful fluid in lung with chronic obstructive pulmonary disease. World J Integr Tradit West Med. 3:635–638.
  • He J, Liu M, Wang Z, Shi R. 2022. Protective effects of the notoginsenoside R1 on acute lung injury by regulating the miR-128-2-5p/Tollip signaling pathway in rats with severe acute pancreatitis. Innate Immun. 28(1):19–36. doi: 10.1177/17534259211068744.
  • Hogg J, Timens W. 2009. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 4(1):435–459. doi: 10.1146/annurev.pathol.4.110807.092145.
  • Holden W, Kishiyama S, Dong S, Osborne M. 1990. Endothelium-dependent effects of cigarette smoke components on tone of porcine intrapulmonary arteries in vitro. Toxicol Appl Pharmacol. 104(2):191–199. doi: 10.1016/0041-008x(90)90294-5.
  • Huang G, Zou B, Lv J, Li T, Huai G, Xiang S, Lu S, Luo H, Zhang Y, Jin Y, et al. 2017. Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway. Int J Mol Med. 39(3):559–568. doi: 10.3892/ijmm.2017.2864.
  • Huang J, Nong X, Chen Y, Zhang A, Chen L. 2021. 3-O-trans-caffeoyloleanolic acid improves acute lung injury via anti-inflammation and antioxidative stress-involved PI3K/AKT pathway. Chem Biol Drug Des. 98(1):114–126. doi: 10.1111/cbdd.13856.
  • Jiang H, Abel P, Toews M, Deng C, Casale T, Xie Y, Tu Y. 2010. Phosphoinositide 3-kinase gamma regulates airway smooth muscle contraction by modulating calcium oscillations. J Pharmacol Exp Ther. 334(3):703–709. doi: 10.1124/jpet.110.168518.
  • Kang J, Jeong SH, Lee K, Park N, Jung H, Lee K, Ju JH. 2020. Exacerbation of symptomatic arthritis by cigarette smoke in experimental arthritis. PLoS One. 15(3):e0230719. doi: 10.1371/journal.pone.0230719.
  • Li L, Sun JX, Wang XQ, Liu XK, Chen XX, Zhang B, He ZD, Liu DZ, Chen LX, Wang LW, et al. 2017. Notoginsenoside R7 suppresses cervical cancer via PI3K/PTEN/Akt/mTOR signaling. Oncotarget. 8(65):109487–109496. doi: 10.18632/oncotarget.22721.
  • Li S, Pi G, Zeng Y, Ruan C, He X, Xiong X, Zhang M, Zou J, Liang X. 2022. Notoginsenoside R1 induces oxidative stress and modulates LPS induced immune microenvironment of nasopharyngeal carcinoma. Int Immunopharmacol. 113(Pt A):109323. doi: 10.1016/j.intimp.2022.109323.
  • Li Y, Li Z, Jia Y, Ding B, Yu J. 2020. In Vitro anti-hepatoma activities of notoginsenoside R1 through downregulation of tumor promoter miR-21. Dig Dis Sci. 65(5):1364–1375. doi: 10.1007/s10620-019-05856-4.
  • Li Y, Ren R, Wang L, Peng K. 2020. Eupatilin alleviates airway remodeling via regulating phenotype plasticity of airway smooth muscle cells. Biosci Rep. 40(1):BSR20191445.
  • Lin H, Xu L, Xie S, Yu F, Hu H, Song X, Wang C. 2015. Mesenchymal stem cells suppress lung inflammation and airway remodeling in chronic asthma rat model via PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 8(8):8958–8967.
  • Liu H, Bai J, Wang W. 2023. CST1 promotes the proliferation and migration of PDGF-BB-treated airway smooth muscle cells via the PI3K/AKT signaling pathway. Kaohsiung J Med Sci. 39(2):145–153. doi: 10.1002/kjm2.12619.
  • Liu W, Li J, Li T, Xie Y, Luo C. 2022. Reineckia carnea alleviates the production of inflammatory cytokines and MUC5AC in rats with chronic obstructive pulmonary disease. Evid Based Complement Alternat Med. 2022:2135487. doi: 10.1155/2022/2135487.
  • Ma J, Tian Y, Li J, Zhang L, Wu M, Zhu L, Liu S. 2019. κEffect of bufei yishen granules combined with electroacupuncture in rats with chronic obstructive pulmonary disease via the regulation of TLR-4/NF-B signaling. Evid Based Complement Alternat Med. 2019:6708645. doi: 10.1155/2019/6708645.
  • Meng J, Zou Y, Hou L, He L, Liu Y, Cao M, Wang C, Du J. 2022. MiR-140-3p ameliorates the inflammatory response of airway smooth muscle cells by targeting HMGB1 to regulate the JAK2/STAT3 signaling pathway. Cell J. 24(11):673–680.
  • Michailidou G, Ainali N, Xanthopoulou E, Nanaki S, Kostoglou M, Koukaras E, Bikiaris D. 2020. Effect of poly(vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polymers (Basel). 12(5):1101. doi: 10.3390/polym12051101.
  • Nie Y, Wu H, Li P, Luo Y, Zhang C, Shen J, Su W. 2012. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 25(5):349–356. doi: 10.1016/j.pupt.2012.06.004.
  • Oltmanns U, Walters M, Sukkar M, Xie S, Issa R, Mitchell J, Johnson M, Chung K. 2008. Fluticasone, but not salmeterol, reduces cigarette smoke-induced production of interleukin-8 in human airway smooth muscle. Pulm Pharmacol Ther. 21(2):292–297. doi: 10.1016/j.pupt.2007.07.001.
  • Pera T, Gosens R, Lesterhuis A, Sami R, van der Toorn M, Zaagsma J, Meurs H. 2010. Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype. Respir Res. 11(1):48. doi: 10.1186/1465-9921-11-48.
  • Pini L, Pinelli V, Modina D, Bezzi M, Tiberio L, Tantucci C. 2014. Central airways remodeling in COPD patients. Int J Chron Obstruct Pulmon Dis. 9:927–932. doi: 10.2147/COPD.S52478.
  • Placeres-Uray F, Febres-Aldana C, Fernandez-Ruiz R, Gonzalez de Alfonzo R, Lippo de Becemberg I, Alfonzo M. 2013. M2 Muscarinic acetylcholine receptor modulates rat airway smooth muscle cell proliferation. World Allergy Organ J. 6(1):22. doi: 10.1186/1939-4551-6-22.
  • Qin B, Zeng Z, Xu J, Shangwen J, Ye Z, Wang S, Wu Y, Peng G, Wang Q, Gu W, et al. 2022. Emodin inhibits invasion and migration of hepatocellular carcinoma cells via regulating autophagy-mediated degradation of snail and β-catenin. BMC Cancer. 22(1):671. doi: 10.1186/s12885-022-09684-0.
  • Qiu C, Zhang J, Su M, Fan X. 2015. Nuclear factor-κB mediates the phenotype switching of airway smooth muscle cells in a murine asthma model. Int J Clin Exp Pathol. 8(10):12115–12128.
  • Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa S, Chatar Singh G, Then K, Ooi G, et al. 2021. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther. 12(1):54. doi: 10.1186/s13287-020-02088-6.
  • Shen H, Sun Y, Zhang S, Jiang J, Dong X, Jia Y, Shen J, Guan Y, Zhang L, Li F, et al. 2014. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation. Biochim Biophys Acta. 1840(6):1838–1849. doi: 10.1016/j.bbagen.2014.01.033.
  • Sun X, Chen L, He Z. 2019. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease. Curr Drug Metab. 20(4):301–304. doi: 10.2174/1389200220666190227224748.
  • Wang H, Mao B, Chen C. 2018. Xiaoqinglong decoction attenuates chronic obstructive pulmonary disease in rats via inhibition of autophagy. Evid Based Complement Alternat Med. 2018:6705871. doi: 10.1155/2018/6705871.
  • Wang H, Yao H, Yi B, Kazama K, Liu Y, Deshpande D, Zhang J, Sun J. 2018. MicroRNA-638 inhibits human airway smooth muscle cell proliferation and migration through targeting cyclin D1 and NOR1. J Cell Physiol. 234(1):369–381. doi: 10.1002/jcp.26930.
  • Wang Y, Xu J, Meng Y, Adcock I, Yao X. 2018. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis. 13:3341–3348. doi: 10.2147/COPD.S176122.
  • Xiao-Li W, Ting L, Ji-Hong L, Shu-Ying M, Xian-Zhong X. 2017. The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease. Molecules. 22(9):1529. doi: 10.3390/molecules22091529.
  • Yuenyongchaiwat K, Vasinsarunkul P, Phongsukree P, Chaturattanachaiyaporn K, Tritanon O. 2020. Duration of hemodialysis associated with cardio-respiratory dysfunction and breathlessness: a multicenter study. PeerJ. 8:e10333. doi: 10.7717/peerj.10333.
  • Zeng J, Shi H, Ren F, Zhao X, Chen Q, Wang D, Wu L, Chu M, Lai T, Li L. 2023. Notoginsenoside R1 protects against myocardial ischemia/reperfusion injury in mice via suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin. 44(7):1366–1379. doi: 10.1038/s41401-023-01057-y.
  • Zheng P, Tian X, Zhang W, Yang Z, Zhou J, Zheng J, Cui H, Tang T, Luo J, Wang Y. 2020. Rhein suppresses neuroinflammation via multiple signaling pathways in LPS-stimulated BV2 microglia cells. Evid Based Complement Alternat Med. 2020:7210627–7210612. doi: 10.1155/2020/7210627.
  • Zhu T, Wang L, Xie W, Meng X, Feng Y, Sun G, Sun X. 2021. Notoginsenoside R1 improves cerebral ischemia/reperfusion injury by promoting neurogenesis via the BDNF/Akt/CREB pathway. Front Pharmacol. 12:615998. doi: 10.3389/fphar.2021.615998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.