Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 36, 2024 - Issue 3
62
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Short-term hyperoxia induced mitochondrial respiratory chain complexes dysfunction and oxidative stress in lung of rats

, , , , , , , , , , , & show all
Pages 174-188 | Received 31 May 2023, Accepted 18 Feb 2024, Published online: 06 Mar 2024

References

  • Aebi H. 1984. Catalase in vitro. Methods Enzymol. 105:121–126. doi:10.1016/s0076-6879(84)05016-3.
  • Aggarwal NR, Brower RG. 2014. Targeting Normoxemia in Acute Respiratory Distress Syndrome May Cause Worse Short-Term Outcomes because of Oxygen Toxicity. Ann Am Thorac Soc. 11(9):1449–1453. doi:10.1513/AnnalsATS.201407-297PS.
  • Agrafiotis M, Papathanassiou M, Karachristos C, Kerezidou E, Tryfon S, Serasli E, Chloros D. 2020. A simplified quantitative acid–base approach for patients with acute respiratory diseases. J Clin Monit Comput. 34(1):21–28. doi:10.1007/s10877-019-00302-2.
  • Ahmad S, White CW, Chang L-Y, Schneider BK, Allen CB. 2001. Glutamine protects mitochondrial structure and function in oxygen toxicity. Am J Physiol Lung Cell Mol Physiol. 280(4):L779–L791. doi:10.1152/ajplung.2001.280.4.L779.
  • Amanzada A, Malik IA, Nischwitz M, Sultan S, Naz N, Ramadori G. 2011. Myeloperoxidase and elastase are only expressed by neutrophils in normal and in inflammed liver. Histochem Cell Biol. 135(3):305–315. doi:10.1007/s00418-011-0787-1.
  • Amarelle L, Quintela L, Hurtado J, Malacrida L. 2021. Hyperoxia and Lungs: what We Have Learned From Animal Models. Front Med (Lausanne). 8:606678. doi:10.3389/fmed.2021.606678.
  • Andonegui G, Zelinski EL, Schubert CL, Knight D, Craig LA, Winston BW, Spanswick SC, Petri B, Jenne CN, Sutherland JC, et al. 2018. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment. JCI Insight. 3(9):1–20. doi:10.1172/JCI.INSIGHT.99364.
  • Andresen JH, Saugstad OD. 2020. Oxygen metabolism and oxygenation of the newborn. Semin Fetal Neonatal Med. 25(2):101078. doi:10.1016/j.siny.2020.101078.
  • Ashley SL, Sjoding MW, Popova AP, Cui TX, Hoostal MJ, Schmidt TM, Branton WR, Dieterle MG, Falkowski NR, Baker JM, et al. 2020. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med. 12(556):eaau9959. doi:10.1126/scitranslmed.aau9959.
  • Aulakh GK. 2020. Lack of CD34 produces defects in platelets, microparticles, and lung inflammation. Cell Tissue Res. 382(2):405–419. doi:10.1007/s00441-020-03243-4.
  • Bailey DM, Taudorf S, Berg RMG, Lundby C, Pedersen BK, Rasmussen P, Møller K. 2011. Cerebral Formation of Free Radicals during Hypoxia Does Not Cause Structural Damage and is Associated with a Reduction in Mitochondrial PO 2 ; Evidence of O 2 -Sensing in Humans? J Cereb Blood Flow Metab. 31(4):1020–1026. doi:10.1038/jcbfm.2011.2.
  • Balan KV, Kc P, Hoxha Z, Mayer CA, Wilson CG, Martin RJ. 2011. Vagal afferents modulate cytokine-mediated respiratory control at the neonatal medulla oblongata. Respir Physiol Neurobiol. 178(3):458–464. doi:10.1016/j.resp.2011.03.003.
  • Bannister JV, Calabrese L. 1987. Assays for superoxide dismutase. Methods Biochem Anal. 32:279–312. doi:10.1002/9780470110539.ch5.
  • Barichello T, Lemos JC, Generoso JS, Cipriano AL, Milioli GL, Marcelino DM, Vuolo F, Petronilho F, Dal-Pizzol F, Vilela MC, et al. 2011. Oxidative stress, cytokine/chemokine and disruption of blood-brain barrier in neonate rats after meningitis by Streptococcus agalactiae. Neurochem Res. 36(10):1922–1930. doi:10.1007/s11064-011-0514-2.
  • Barry BE, Crapo JD. 1985. Patterns of accumulation of platelets and neutrophils in rat lungs during exposure to 100% and 85% oxygen. Am Rev Respir Dis. 132(3):548–555. doi:10.1164/arrd.1985.132.3.548.
  • Bavis RW, Li KY, DeAngelis KJ, March RJ, Wallace JA, Logan S, Putnam RW. 2017. Ventilatory and chemoreceptor responses to hypercapnia in neonatal rats chronically exposed to moderate hyperoxia. Respir Physiol Neurobiol. 237:22–34. doi:10.1016/j.resp.2016.12.008.
  • Black S, Kushner I, Samols D. 2004. C-reactive Protein. J Biol Chem. 279(47):48487–48490. doi:10.1074/jbc.R400025200.
  • Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart B, Lung N. 2004. Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 351:327–336. doi:10.1056/NEJMoa032193.
  • Buckler KJ. 2015. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch. 467(5):1013–1025. doi:10.1007/s00424-015-1689-1.
  • Cassina A, Radi R. 1996. Differential Inhibitory Action of Nitric Oxide and Peroxynitrite on Mitochondrial Electron Transport. Arch Biochem Biophys. 328(2):309–316. doi:10.1006/abbi.1996.0178.
  • Cervaens M, Sepodes B, Camacho O, Marques F, Barata P. 2014. Farmacoterapia do Oxigénio normobárico e hiperbárico. Pharmacotherapy of Normobaric and Hyperbaric Oxygen 3:131–142.
  • Chen Y, Zhou Z, Min W. 2018. Mitochondria, Oxidative Stress and Innate Immunity. Front Physiol. 9:1487. doi:10.3389/fphys.2018.01487.
  • Chu DK, Kim LHY, Young PJ, Zamiri N, Almenawer SA, Jaeschke R, Szczeklik W, Schünemann HJ, Neary JD, Alhazzani W. 2018. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 391(10131):1693–1705. doi:10.1016/S0140-6736(18)30479-3.
  • Cobley JN, Fiorello ML, Bailey DM. 2018. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15:490–503. doi:10.1016/j.redox.2018.01.008.
  • Cortes-Puentes GA, Westerly B, Schiavo D, Wang S, Stroetz R, Walters B, Hubmayr RD, Oeckler RA. 2019. Hypercapnia Alters Alveolar Epithelial Repair by a pH-Dependent and Adenylate Cyclase-Mediated Mechanism. Sci Rep. 9(1):349. doi:10.1038/s41598-018-36951-7.
  • Cullivan S, Murphy CA, Weiss L, Comer SP, Kevane B, McCullagh B, Maguire PB, Ní Ainle F, Gaine SP. 2021. Platelets, extracellular vesicles and coagulation in pulmonary arterial hypertension. Pulm Circ. 11(3):20458940211021036–20458940211021039. doi:10.1177/20458940211021036.
  • Dal-Pizzol F, Ritter C, Cassol OJ, Jr, Rezin GT, Petronilho F, Zugno AI, Quevedo J, Streck EL. 2010. Oxidative Mechanisms of Brain Dysfunction During Sepsis. Neurochem Res. 35(1):1–12. doi:10.1007/s11064-009-0043-4.
  • Damiani E, Donati A, Girardis M. 2018. Oxygen in the critically ill. Curr Opin Anaesthesiol. 31(2):129–135. doi:10.1097/ACO.0000000000000559.
  • Danielski LG, Giustina AD, Bonfante S, de Souza Goldim MP, Joaquim L, Metzker KL, Biehl EB, Vieira T, de Medeiros FD, da Rosa N, et al. 2020. NLRP3 Activation Contributes to Acute Brain Damage Leading to Memory Impairment in Sepsis-Surviving Rats. Mol Neurobiol. 57(12):5247–5262. doi:10.1007/s12035-020-02089-9.
  • Das KC. 2013. Hyperoxia Decreases Glycolytic Capacity, Glycolytic Reserve and Oxidative Phosphorylation in MLE-12 Cells and Inhibits Complex I and II Function, but Not Complex IV in Isolated Mouse Lung Mitochondria. PLoS One. 8(9):e73358. doi:10.1371/journal.pone.0073358.
  • de Andrade JAA, Gayer CRM, Nogueira NPdA, Paes MC, Bastos VLFC, Neto JdCB, Alves SC, Coelho RM, Cunha d, Gomes MGAT, et al. 2014. The effect of thiamine deficiency on inflammation, oxidative stress and cellular migration in an experimental model of sepsis. J Inflamm. 11(1):11. doi:10.1186/1476-9255-11-11.
  • de Andrade TA, Evangelista AF, Campos AHF, Poles WA, Borges NM, Camillo CMC, Soares FA, Vassallo J, Paes RP, Zerbini MC, et al. 2014. A microRNA signature profile in EBV + diffuse large B-cell lymphoma of the elderly. Oncotarget. 5(23):11813–11826. doi:10.18632/oncotarget.2952.
  • De Servi S, Mariani M, Mariani G, Mazzone A. 2005. C-Reactive Protein Increase in Unstable Coronary Disease. J Am Coll Cardiol. 46(8):1496–1502. doi:10.1016/j.jacc.2005.05.083.
  • De Young LM, Kheifets JB, Ballaron SJ, Young JM. 1989. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions. 26(3-4):335–341. doi:10.1007/BF01967298.
  • Deppermann C. 2018. Platelets and vascular integrity. Platelets. 29(6):549–555. doi:10.1080/09537104.2018.1428739.
  • Di Meo S, Venditti P. 2020. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid Med Cell Longev. 2020:9829176–9829132. doi:10.1155/2020/9829176.
  • Draper HH, Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186:421–431. doi:10.1016/0076-6879(90)86135-i.
  • Dyson A, Stidwill R, Taylor V, Singer M. 2009. The impact of inspired oxygen concentration on tissue oxygenation during progressive haemorrhage. Intensive Care Med. 35(10):1783–1791. doi:10.1007/s00134-009-1577-2.
  • Farquhar H, Weatherall M, Wijesinghe M, Perrin K, Ranchord A, Simmonds M, Beasley R. 2009. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 158(3):371–377. doi:10.1016/j.ahj.2009.05.037.
  • Ferguson ND. 2016. Oxygen in the ICU. JAMA. 316(15):1553–1554. doi:10.1001/jama.2016.13800.
  • Fialkow L, Wang Y, Downey GP. 2007. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 42(2):153–164. doi:10.1016/j.freeradbiomed.2006.09.030.
  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM. 1985. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta. 153(1):23–36. doi:10.1016/0009-8981(85)90135-4.
  • Garcia D, Carr JF, Chan F, Peterson AL, Ellis KA, Scaffa A, Ghio AJ, Yao H, Dennery PA. 2020. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice. Pediatr Res. 90(1):58–65. doi:10.1038/s41390-020-01224-5.
  • Ghezzi P, Bonetto V, Fratelli M. 2005. Thiol–Disulfide Balance: from the Concept of Oxidative Stress to that of Redox Regulation. Antioxid Redox Signal. 7(7-8):964–972. doi:10.1089/ars.2005.7.964.
  • Giustina AD, Bonfante S, Zarbato GF, Danielski LG, Mathias K, de Oliveira AN, Jr., Garbossa L, Cardoso T, Fileti ME, De Carli RJ, et al. 2018. Dimethyl Fumarate Modulates Oxidative Stress and Inflammation in Organs After Sepsis in Rats. Inflammation. 41(1):315–327. http://doi: doi:10.1007/s10753-017-0689-z.
  • Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB. 2021. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol. 599(3):863–888. doi:10.1113/JP278930.
  • Goss KN, Kumari S, Tetri LH, Barton G, Braun RK, Hacker TA, Eldridge MW. 2017. Postnatal Hyperoxia Exposure Durably Impairs Right Ventricular Function and Mitochondrial Biogenesis. Am J Respir Cell Mol Biol. 56(5):609–619. doi:10.1165/rcmb.2016-0256OC.
  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 126(1):131–138. doi:10.1016/0003-2697(82)90118-X.
  • Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P. 2015. Hyperoxia in intensive care, emergency, and peri-operative medicine: dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care. 5(1):42. doi:10.1186/s13613-015-0084-6.
  • Halliwell B, Gutteridge JMC. 2015. Free Radicals in Biology and Medicine, 5th ed, Oxford University Press. Oxford University Press, Oxford, UK. doi:10.1093/acprof:oso/9780198717478.001.0001.
  • Hanidziar D, Robson SC. 2021. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am J Physiol Lung Cell Mol Physiol. 320(1):L12–L16. doi:10.1152/ajplung.00304.2020.
  • Helmerhorst HJF, Schouten LRA, Wagenaar GTM, Juffermans NP, Roelofs JJTH, Schultz MJ, de Jonge E, van Westerloo DJ. 2017. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med. Exp. 5:27. doi:10.1186/s40635-017-0142-5.
  • Helmerhorst HJF, Schultz MJ, van der Voort PHJ, Bosman RJ, Juffermans NP, de Jonge E, van Westerloo DJ. 2014. Self-reported attitudes versus actual practice of oxygen therapy by ICU physicians and nurses. Ann Intensive Care. 4(1):23. doi:10.1186/s13613-014-0023-y.
  • Herold S, Gabrielli NM, Vadász I. 2013. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 305(10):L665–L681. doi:10.1152/ajplung.00232.2013.
  • Heuertz RM, Webster RO. 1997. Role of C-reactive protein in acute lung injury. Mol Med Today. 3(12):539–545. doi:10.1016/S1357-4310(97)01145-3.
  • Ho E, Karimi Galougahi K, Liu C-C, Bhindi R, Figtree GA. 2013. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 1(1):483–491. doi:10.1016/j.redox.2013.07.006.
  • Incerpi EK, Oliveira LM, Pereira EM, Soncini R. 2015. Inhibition of endogenous glucocorticoid synthesis aggravates lung injury triggered by septic shock in rats. Int J Exp Pathol. 96(3):133–139. doi:10.1111/iep.12113.
  • Itagaki T, Nakano Y, Okuda N, Izawa M, Onodera M, Imanaka H, Nishimura M. 2015. Hyperoxemia in Mechanically Ventilated, Critically Ill Subjects: incidence and Related Factors. Respir Care. 60(3):335–340. doi:10.4187/respcare.03451.
  • Janz DR, Ware LB. 2015. The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS. J Intensive Care. 3(1):20. doi:10.1186/s40560-015-0086-3.
  • Jensen FB. 2004. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand. 182(3):215–227. doi:10.1111/j.1365-201X.2004.01361.x.
  • Jiang X, Ma Y, Yu J, Li H, Xie F. 2016. Protective effect of C4a against hyperoxic lung injury via a macrophage-dependent but not a neutrophil/lymphocyte-dependent signaling pathway. Mol Med Rep. 13(2):1250–1256. doi:10.3892/mmr.2015.4651.
  • Kacira T, Kemerdere R, Atukeren P, Hanimoglu H, Sanus GZ, Kucur M, Tanriverdi T, Gumustas K, Kaynar MY. 2007. Detection of caspase-3, neuron specific enolase, and high-sensitivity C-reactive protein levels in both cerebrospinal fluid and serum of patients after aneurysmal subarachnoid hemorrhage. Neurosurgery. 60(4):674–680. doi:10.1227/01.NEU.0000255394.77538.BB.
  • Kacmarek RM, Berra L, Villar J. 2018. On the Road to Surface Monitoring of Diaphragmatic Activity in Mechanically Ventilated Patients. Respir Care. 63(11):1457–1458. doi:10.4187/respcare.06685.
  • Katz JN, Kolappa KP, Becker RC. 2011. Beyond Thrombosis. Chest. 139(3):658–668. doi:10.1378/chest.10-1971.
  • Klings ES, Lowry MH, Li G, Jean J-C, Fernandez BO, Garcia-Saura MF, Feelisch M, Joyce-Brady M. 2009. Hyperoxia-Induced Lung Injury in Gamma-Glutamyl Transferase Deficiency Is Associated with Alterations in Nitrosative and Nitrative Stress. Am J Pathol. 175(6):2309–2318. doi:10.2353/ajpath.2009.081017.
  • Körpınar Ş, Uzun H. 2019. The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats. Medicina (Kaunas). 55(5):205. doi:10.3390/medicina55050205.
  • Kovach M. a, Standiford TJ. 2012. The function of neutrophils in sepsis. Curr Opin Infect Dis. 25(3):321–327. doi:10.1097/QCO.0b013e3283528c9b.
  • Kumar VHS, Lakshminrusimha S, Kishkurno S, Paturi BS, Gugino SF, Nielsen L, Wang H, Ryan RM. 2016. Neonatal hyperoxia increases airway reactivity and inflammation in adult mice. Pediatr Pulmonol. 51(11):1131–1141. doi:10.1002/ppul.23430.
  • Lang CJ, Postle AD, Orgeig S, Possmayer F, Bernhard W, Panda AK, Jürgens KD, Milsom WK, Nag K, Daniels CB. 2005. Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am J Physiol Regul Integr Comp Physiol. 289(5):R1426–R1439. doi:10.1152/ajpregu.00496.2004.
  • Leahy S, Matei N, Blair NP, Shahidi M. 2022. Retinal Oxygen Delivery and Metabolism Response to Hyperoxia During Bilateral Common Carotid Artery Occlusion in Rats. Invest Ophthalmol Vis Sci. 63(6):30. doi:10.1167/iovs.63.6.30.
  • Leverve XM. 2008. To cope with oxygen: a long and still tumultuous story for life. *Crit Care Med. 36(2):637–638. doi:10.1097/CCM.0B013E31816296AD.
  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186:464–478. doi:10.1016/0076-6879(90)86141-h.
  • Li L-F, Liao S-K, Ko Y-S, Lee C-H, Quinn DA. 2007. Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases: a prospective, controlled animal experiment. Crit Care. 11(1):R25. doi:10.1186/cc5704.
  • Lignelli E, Palumbo F, Myti D, Morty RE. 2019. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 317(6):L832–L887. doi:10.1152/ajplung.00369.2019.
  • Lilien TA, Groeneveld NS, van Etten-Jamaludin F, Peters MJ, Buysse CMP, Ralston SL, van Woensel JBM, Bos LDJ, Bem RA. 2022. Association of Arterial Hyperoxia With Outcomes in Critically Ill Children. JAMA Netw Open. 5(1):e2142105. doi:10.1001/jamanetworkopen.2021.42105.
  • Liu G, Mei H, Chen M, Qin S, Li K, Zhang W, Chen T. 2019. Protective effect of agmatine against hyperoxia-induced acute lung injury via regulating lncRNA gadd7. Biochem Biophys Res Commun. 516(1):68–74. doi:10.1016/j.bbrc.2019.04.164.
  • Liu Q, Gao Y, Ci X. 2019. Role of Nrf2 and Its Activators in Respiratory Diseases. Oxid Med Cell Longev. 2019:7090534. doi:10.1155/2019/7090534.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein Meansurement With the Folin Phenol Reagent. J. Biol. Chem. 193(1):265–275. doi:10.1016/S0021-9258(19)52451-6.
  • Machado RS, Tenfen L, Joaquim L, Lanzzarin EVR, Bernardes GC, Bonfante SR, Mathias K, Biehl E, Bagio É, Stork SdS, et al. 2022. Hyperoxia by short-term promotes oxidative damage and mitochondrial dysfunction in rat brain. Respir Physiol Neurobiol. 306:103963. doi:10.1016/j.resp.2022.103963.
  • MacIntyre NR. 2013. Supporting Oxygenation in Acute Respiratory Failure. Respir Care. 58(1):142–150. doi:10.4187/respcare.02087.
  • MacLaughlin K, Barton G, Braun R, Eldridge M. 2019. Effect of intermittent hyperoxia on stem cell mobilization and cytokine expression. Med Gas Res. 9(3):139. doi:10.4103/2045-9912.266989.
  • Magnúsdóttir SO, Maltesen RG, Haugaard Banch L, Baandrup UT, Valbjørn H, Andreassen T, Bathen TF, Steen Rasmussen B, Kjærgaard B. 2019. Hyperoxia affects the lung tissue: a porcine histopathological and metabolite study using five hours of apneic oxygenation. Metabol Open. 4:100018. doi:10.1016/j.metop.2019.100018.
  • Martin DS, Grocott MPW. 2013. Oxygen Therapy in Critical Illness. Crit Care Med. 41(2):423–432. doi:10.1097/CCM.0b013e31826a44f6.
  • Mazullo Filho JBR, Bona S, Rosa DPd, Silva FGd, Forgiarini Junior LA, Dias AS, Marroni NP. 2012. Os efeitos da ventilação mecânica no estresse oxidativo. Rev Bras Ter Intensiva. 24(1):23–29. doi:10.1590/S0103-507X2012000100004.
  • Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, et al. 2021. Carbon dioxide transport across membranes. Interface Focus. 11(2):20200090. doi:10.1098/rsfs.2020.0090.
  • Modun D, Krnic M, Vukovic J, Kokic V, Kukoc-Modun L, Tsikas D, Dujic Z. 2012. Plasma nitrite concentration decreases after hyperoxia-induced oxidative stress in healthy humans. Clin Physiol Funct Imaging. 32(5):404–408. doi:10.1111/j.1475-097X.2012.01133.x.
  • Mokra D, Kosutova P. 2015. Biomarkers in acute lung injury. Respir Physiol Neurobiol. 209:52–58. doi:10.1016/j.resp.2014.10.006.
  • Moon KM, Min K-W, Kim M-H, Kim D-H, Son BK, Oh Y, Jung W, Kwon M, Kwon O-Y. 2019. Higher Acid-Base Imbalance Associated with Respiratory Failure Could Decrease the Survival of Patients with Scrub Typhus during Intensive Care Unit Stay: a Gene Set Enrichment Analysis. J Clin Med. 8(10):1580. doi:10.3390/jcm8101580.
  • Mousavi S, Abdollahi M, Ahmadi A, Najafi A, Pazouki M, Hadjibabaie M, Ziaee S, Hamishehkar H, Kebriaeezadeh A, Mojtahedzadeh M. 2011. The dilemma of hyperoxia following positive pressure mechanical ventilation: role of iron and the benefit of iron chelation with deferasirox. Eur Rev Med Pharmacol Sci. 15(10):1141–1148.
  • Mu G, Deng Y, Lu Z, Li X, Chen Y. 2021. miR-20b suppresses mitochondrial dysfunction-mediated apoptosis to alleviate hyperoxia-induced acute lung injury by directly targeting MFN1 and MFN2. Acta Biochim Biophys Sin (Shanghai). 53(2):220–228. doi:10.1093/abbs/gmaa161.
  • Nagato A, Silva FL, Silva AR, Bezerra FS, Oliveira ML, Belló-Klein A, Cristovao Porto L, Santos Valenca S. 2009. Hyperoxia-induced lung injury is dose dependent in Wistar rats. Exp Lung Res. 35(8):713–728. doi:10.3109/01902140902853184.
  • Nagato AC, Bezerra FS, Lanzetti M, Lopes AA, Silva MAS, Porto LC, Valença SS. 2012. Time course of inflammation, oxidative stress and tissue damage induced by hyperoxia in mouse lungs. Int J Exp Pathol. 93(4):269–278. doi:10.1111/j.1365-2613.2012.00823.x.
  • Nagato AC, Bezerra FS, Talvani A, Aarestrup BJ, Aarestrup FM. 2015. Hyperoxia promotes polarization of the immune response in ovalbumin‐induced airway inflammation, leading to a TH 17 cell phenotype. Immun Inflamm Dis. 3(3):321–337. doi:10.1002/iid3.71.
  • Ndrepepa G. 2019. Myeloperoxidase – A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 493:36–51. doi:10.1016/j.cca.2019.02.022.
  • Netto MB, de Oliveira Junior AN, Goldim M, Mathias K, Fileti ME, da Rosa N, Laurentino AO, de Farias BX, Costa AB, Rezin GT, et al. 2018. Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav Immun. 73:661–669. doi:10.1016/j.bbi.2018.07.016.
  • Ni Y-N, Wang Y-M, Liang B-M, Liang Z-A. 2019. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 19(1):53. doi:10.1186/s12890-019-0810-1.
  • Nie M, Wang Y, Lu Y, Yuan Y, Liu Y, Li X. 2017. Protective effects of fucoidan against hyperoxic lung injury via the ERK signaling pathway. Mol. Med. Rep. 17:1813–1818. doi:10.3892/mmr.2017.8022.
  • Nørgaard AW, Larsen ST, Hammer M, Poulsen SS, Jensen KA, Nielsen GD, Wolkoff P. 2010. Lung Damage in Mice after Inhalation of Nanofilm Spray Products: the Role of Perfluorination and Free Hydroxyl Groups. Toxicol Sci. 116(1):216–224. doi:10.1093/toxsci/kfq094.
  • O'Reilly MA, Marr SH, Yee M, McGrath-Morrow SA, Lawrence BP. 2008. Neonatal Hyperoxia Enhances the Inflammatory Response in Adult Mice Infected with Influenza A Virus. Am J Respir Crit Care Med. 177(10):1103–1110., doi:10.1164/rccm.200712-1839OC.
  • Ogawa Y, Tasaka S, Yamada W, Saito F, Hasegawa N, Miyasho T, Ishizaka A. 2007. Role of Toll-like receptor 4 in hyperoxia-induced lung inflammation in mice. Inflamm Res. 56(8):334–338. doi:10.1007/s00011-007-7052-z.
  • Ottolenghi S, Sabbatini G, Brizzolari A, Samaja M, Chiumello D. 2020. Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anestesiol. 86(1):64–75. doi:10.23736/S0375-9393.19.13906-5.
  • Oury TD, Schaefer LM, Fattman CL, Choi A, Weck KE, Watkins SC. 2002. Depletion of pulmonary EC-SOD after exposure to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 283(4):L777–L784. doi:10.1152/ajplung.00011.2002.
  • Page D, Ablordeppey E, Wessman BT, Mohr NM, Trzeciak S, Kollef MH, Roberts BW, Fuller BM. 2018. Emergency department hyperoxia is associated with increased mortality in mechanically ventilated patients: a cohort study. Crit Care. 22(1):9. doi:10.1186/s13054-017-1926-4.
  • Panwar R, Capellier G, Schmutz N, Davies A, Cooper DJ, Bailey M, Baguley D, Pilcher DV, Bellomo R. 2013. Current Oxygenation Practice in Ventilated Patients—An Observational Cohort Study. Anaesth Intensive Care. 41(4):505–514. doi:10.1177/0310057X1304100412.
  • Park HS, Kim SR, Lee YC. 2009. Impact of oxidative stress on lung diseases. Respirology. 14(1):27–38. doi:10.1111/j.1440-1843.2008.01447.x.
  • Paiva LA, Silva IS, Souza AS, de Cassino PC. 2017. Pulmonary oxidative stress in diabetic rats exposed to hyperoxia. Acta Cir Bras. 32(7):503–514. doi:10.1590/s0102-865020170070000001.
  • Pereira FP. 2006. Obesidade e inflamação: o elo reconhecido. Nutrícias. 6:40–43.
  • Perrone S, Laschi E, Buonocore G. 2020. Oxidative stress biomarkers in the perinatal period: diagnostic and prognostic value. Semin Fetal Neonatal Med. 25(2):101087. doi:10.1016/j.siny.2020.101087.
  • Puri SK, Li J, Xiong M, Reyes J, Nadavaluru PR, Ye JH, Bekker A. 2015. Method for Single Intravenous Anesthetic Infusion in a Rodent Model. OJAnes. 05(05):96–104. doi:10.4236/ojanes.2015.55019.
  • Rachmale S, Li G, Wilson G, Malinchoc M, Gajic O. 2012. Practice of Excessive FIO2 and Effect on Pulmonary Outcomes in Mechanically Ventilated Patients With Acute Lung Injury. Respir Care. 57(11):1887–1893. doi:10.4187/respcare.01696.
  • Radi R. 2018. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci U S A. 115(23):5839–5848. doi:10.1073/pnas.1804932115.
  • Ralston SL, Lieberthal AS, Meissner HC, Alverson BK, Baley JE, Gadomski AM, Johnson DW, Light MJ, Maraqa NF, Mendonca EA, et al. 2014. Clinical Practice Guideline: the Diagnosis, Management, and Prevention of Bronchiolitis. Pediatrics. 134(5):e1474–e1502. doi:10.1542/peds.2014-2742.
  • Ramani M, Miller K, Brown J, Kumar R, Kadasamy J, McMahon L, Ballinger S, Ambalavanan N. 2019. Early Life Supraphysiological Levels of Oxygen Exposure Permanently Impairs Hippocampal Mitochondrial Function. Sci Rep. 9(1):13364. doi:10.1038/s41598-019-49532-z.
  • Reddy RC, Standiford TJ. 2010. Nrf2 and PPARγ. Am J Respir Crit Care Med. 182(2):134–135. doi:10.1164/rccm.201004-0457ED.
  • Reidy BTG, Whyte P, Neligan PJ. 2020. Is oxygen toxic?., in: deutschman, C., Neligan, P. (Eds.), Evidence-Based Practice of Critical Care. Elsevier, Ontario, p. 36–42.e1. doi:10.1016/B978-0-323-64068-8.00015-8.
  • Resseguie EA, Staversky RJ, Brookes PS, O'Reilly MA., 2015. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction. Redox Biol. 5:176–185. doi:10.1016/j.redox.2015.04.012.
  • Rincon F, Kang J, Vibbert M, Urtecho J, Athar MK, Jallo J. 2014. Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. J Neurol Neurosurg Psychiatry. 85(7):799–805. doi:10.1136/jnnp-2013-305505.
  • Robbins CG, Davis JM, Merritt TA, Amirkhanian JD, Sahgal N, Morin FC, Horowitz S. 1995. Combined effects of nitric oxide and hyperoxia on surfactant function and pulmonary inflammation. Am J Physiol. 269(4 Pt 1):L545–L550. doi:10.1152/ajplung.1995.269.4.L545.
  • Rossi P, Tauzin L, Weiss M, Rostain J-C, Sainty J-M, Boussuges A. 2007. Could hyperoxic ventilation impair oxygen delivery in septic patients? Clin Physiol Funct Imaging. 27(3):180–184. doi:10.1111/j.1475-097X.2007.00732.x.
  • Rubenfeld GD, Herridge MS. 2007. Epidemiology and Outcomes of Acute Lung Injury. Chest. 131(2):554–562. doi:10.1378/chest.06-1976.
  • Sanders SP, Zweier JL, Kuppusamy P, Harrison SJ, Bassett DJ, Gabrielson EW, Sylvester JT. 1993. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport. J Clin Invest. 91(1):46–52. doi:10.1172/JCI116198.
  • Schmiedl A, Roolfs T, Tutdibi E, Gortner L, Monz D. 2017. Influence of prenatal hypoxia and postnatal hyperoxia on morphologic lung maturation in mice. PLoS One. 12(4):e0175804. doi:10.1371/journal.pone.0175804.
  • Sena LA, Chandel NS. 2012. Physiological Roles of Mitochondrial Reactive Oxygen Species. Mol Cell. 48(2):158–167. doi:10.1016/j.molcel.2012.09.025.
  • Sies H, Berndt C, Jones DP. 2017. Oxidative Stress. Annu Rev Biochem. 86(1):715–748. doi:10.1146/annurev-biochem-061516-045037.
  • Stolmeijer R, Bouma HR, Zijlstra JG, Drost-de Klerck AM, ter Maaten JC, Ligtenberg JJM. 2018. A Systematic Review of the Effects of Hyperoxia in Acutely Ill Patients: should We Aim for Less? Biomed Res Int. 2018:7841295–7841299. doi:10.1155/2018/7841295.
  • Sottile PD, Albers D, Moss MM. 2018. Neuromuscular blockade is associated with the attenuation of biomarkers of epithelial and endothelial injury in patients with moderate-to-severe acute respiratory distress syndrome. Crit Care. 22(1):63. doi:10.1186/s13054-018-1974-4.
  • Suzuki S, Eastwood GM, Peck L, Glassford NJ, Bellomo R. 2013. Current oxygen management in mechanically ventilated patients: A prospective observational cohort study. J Crit Care. 28(5):647–654. doi:10.1016/j.jcrc.2013.03.010.
  • Suzuki Y, Nishio K, Takeshita K, Takeuchi O, Watanabe K, Sato N, Naoki K, Kudo H, Aoki T, Yamaguchi K. 2000. Effect of steroid on hyperoxia-induced ICAM-1 expression in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol. 278(2):L245–L252. doi:10.1152/ajplung.2000.278.2.L245.
  • Ten VS, Ratner V. 2020. Mitochondrial bioenergetics and pulmonary dysfunction: current progress and future directions. Paediatr Respir Rev. 34:37–45. doi:10.1016/j.prrv.2019.04.001.
  • Thomson AJ, Drummond GB, Waring WS, Webb DJ, Maxwell SRJ. 2006. Effects of short-term isocapnic hyperoxia and hypoxia on cardiovascular function. J Appl Physiol (1985). 101(3):809–816. doi:10.1152/japplphysiol.01185.2005.
  • Thomson L, Paton J. 2014. Oxygen Toxicity. Paediatr Respir Rev. 15(2):120–123. doi:10.1016/j.prrv.2014.03.003.
  • Tobin MJ. 1994. Mechanical Ventilation. N Engl J Med. 330(15):1056–1061. doi:10.1056/NEJM199404143301507.
  • Torbati D, Tan GH, Smith S, Frazier KS, Gelvez J, Fakioglu H, Totapally BR. 2006. Multiple-organ effect of normobaric hyperoxia in neonatal rats. J Crit Care. 21(1):85–93. doi:10.1016/j.jcrc.2005.09.057.
  • Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M. 2017. Oxygen and oxidative stress in the perinatal period. Redox Biol. 12:674–681. doi:10.1016/j.redox.2017.03.011.
  • Tsukahara H. 2007. Biomarkers for Oxidative Stress: clinical Application in Pediatric Medicine. Curr Med Chem. 14(3):339–351. doi:10.2174/092986707779941177.
  • Valença SdS, Kloss ML, Bezerra FS, Lanzetti M, Silva FL, Porto LC. 2007. Efeitos da hiperóxia sobre o pulmão de ratos Wistar. J Bras Pneumol. 33(6):655–662. doi:10.1590/S1806-37132007000600008.
  • Wang F, Zuo Z, Chen K, Fang J, Cui H, Shu G, Zhou Y, Chen Z, Huang C, Liu W. 2018. Histopathological Changes Caused by Inflammation and Oxidative Stress in Diet-Induced-Obese Mouse following Experimental Lung Injury. Sci Rep. 8(1):14250. doi:10.1038/s41598-018-32420-3.
  • Wang J, Fu H, Wang B, Yu JG, Liu X, Liu Y, Xu C, Zhang Y. 2022. Carbazochrome attenuates acute lung injury in septic rats by inhibition of Parkin-mediated mitochondrial autophagy. J Rad Res App Sci. 15(3):12–20. doi:10.1016/j.jrras.2022.05.017.
  • Wang Y, Zhong M, Wang Z, Song J, Wu W, Zhu D. 2018. The preventive effect of antiplatelet therapy in acute respiratory distress syndrome: a meta-analysis. Crit Care. 22(1):60. doi:10.1186/s13054-018-1988-y.
  • Ward NS, Waxman AB, Homer RJ, Mantell LL, Einarsson O, Du Y, Elias JA. 2000. Interleukin-6–Induced Protection in Hyperoxic Acute Lung Injury. Am J Respir Cell Mol Biol. 22(5):535–542. doi:10.1165/ajrcmb.22.5.3808.
  • Weigel AL, Ida H, Boylan SA, Hjelmeland LM. 2003. Acute hyperoxia-induced transcriptional response in the mouse RPE/choroid. Free Radic Biol Med. 35(5):465–474. doi:10.1016/S0891-5849(03)00320-4.
  • Wu Y, Potempa LA, El Kebir D, Filep JG. 2015. C-reactive protein and inflammation: conformational changes affect function. Biol Chem. 396(11):1181–1197. doi:10.1515/hsz-2015-0149.
  • Yao Z, Zhang Y, Wu H. 2019. Regulation of C-reactive protein conformation in inflammation. Inflamm Res. 68(10):815–823. doi:10.1007/s00011-019-01269-1.
  • Yeaman MR. 2014. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 12(6):426–437. doi:10.1038/nrmicro3269.
  • Yee M, David Cohen E, Haak J, Dylag AM, O’Reilly MA. 2020. Neonatal hyperoxia enhances age-dependent expression of SARS-CoV-2 receptors in mice. Sci Rep. 10(1):22401. doi:10.1038/s41598-020-79595-2.
  • Zaja-Milatovic S, Gupta RC. 2015. Excitotoxicity, oxidative stress, and neuronal injury. In: Handbook of toxicology of chemical warfare agents. Academic Press, Elsevier. p. 795–810. doi:10.1016/B978-0-12-819090-6.00047-7.
  • Zarbock A, Polanowska-Grabowska RK, Ley K. 2007. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 21(2):99–111. doi:10.1016/j.blre.2006.06.001.
  • Zhu X, Wang F, Lei X, Dong W. 2021. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp Biol Med (Maywood). 246(5):596–606. doi:10.1177/1535370220975106.
  • Zou D, Li J, Fan Q, Zheng X, Deng J, Wang S. 2019. Reactive oxygen and nitrogen species induce cell apoptosis via a mitochondria‐dependent pathway in hyperoxia lung injury. J Cell Biochem. 120(4):4837–4850. doi:10.1002/jcb.27382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.