Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 10, 1998 - Issue 10
9
Views
3
CrossRef citations to date
0
Altmetric
Research Article

PHYSIOLOGIC MODELS FOR COMPARISON OF INHALATION DOSE BETWEEN LABORATORY AND FIELD-GENERATED ATMOSPHERES OF A DRY POWDER FIRE SUPPRESSANT

, , , &
Pages 905-922 | Published online: 01 Oct 2008

References

  • Alstrup, P., Kjeldsen, K., and Wanstrup, J. 1970. Effects of carbon monoxide exposure on arterial walls. Ann. NY Acad. Sci. 174:294–300.
  • Andersen, M. E., Clewell, H. J., Gargas, M. L., MacNaughton, M. G., Reitz, R. H., Nolan, R. J., and McKenna, M. J. 1991. Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans. Toxicol. Appl. Pharmacol. 108:14–27.
  • Benignus, V. A., and Annau, Z. 1994. Carboxyhemoglobin formation due to carbon monoxide expo-sure in rats. Toxicol. Appl. PharmacoL 128:151–157.
  • Black, B. H., Smith, W. D., Sheinson, R. S., and Mitchell, C. 1995. Intermediate scale testing of solid aerosol fire extinguishants. Proc. 1995 International CFC and Ha/on Alternatives Conference and Exhibition, October 15–18, Washington, DC, pp. 616–625. Washington, DC: U.S. Environ-mental Protection Agency.
  • Carpenter, R. L., and Kimmel, E. C. 1998. Use of an aerosol deposition model to compare inhalation toxicity risk between laboratory and field aerosol exposures. Toxicol. Sci. 42(5):252 (abstr).
  • Coburn, R. F., Forster, R. E., and Kane, P. B. 1965. Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man.]. Clin. Invest. 66:1899–1910.
  • Costa, D. L., Tepper, J. S., and Raub, J. A. 1992. Interpretations and limitations of pulmonary function testing in small laboratory animals. In Treatise on pulmonary toxicology: Comparative biology of the normal lung., Vol. I, ed. R. A. Parent, pp. 367–399. Boca Raton, FL: CRC Press.
  • Graham, R. C., Menache, M. G., and Overton, J. H. 1996. Models of the tracheobronchial airways of the dog lung. Inhal. Toxicol. 8:121–142.
  • Kimmel, E. C., Smith, E. A., Prues, S., Zepp, K., English, J. H., and Carpenter, R. L. 1996. Pulmonary edemagenesis in F-344 rats exposed to SFE (formulation A) atmospheres. Ha/on Options Technical Working Conference Proc. May 11–13, Albuquerque, NM, pp. 129–142. Albuquerque: Univers-ity of New Mexico, New Mexico Engineering Research Institute, Center for Global Environ-mental Technologies.
  • Kimmel, E. C., Smith, E. A., Reboulet, J. E., Still, K. R., and Carpenter, R. L. 1997a. The Physicochemical Properties of SFE Fire Suppressant Atmospheres in Toxicity vs. Fire Extinguish-ment Tests: Implications for Aerosol Deposition and Toxicity. NMRI/TD Technical Report, NMRI-97-38, pp. 1–48. Wright-Patterson Air Force Base, OH: Naval Medical Research Institute Detachment (Toxicology).
  • Kimmel, E. C., Yerkes, K. L., and Carpenter, R. L. 1997b. Performance, fluid mechanics, and design of a small-animal, whole-body inhalation exposure chamber. Inhal. Toxicol. 9:287–315.
  • Kimmel, E. C., Smith, E. A., and Carpenter, R. L. 1998. A physiologic model for predicting carboxy-hemoglobin formation in F-344 rats. Toxicol. Sci. 42(5):253 (abstr.).
  • Lipsett, M. J., Shusterman, D. J., and Beard, R. R. 1994. Inorganic compounds of carbon, nitrogen, and oxygen. In Patty's industrial hygiene and toxicology, 4th ed., Vol. 2, Part F, eds. G. D. Clayton and F. E. Clayton, pp. 4523–4552. New York: John Wiley & Sons.
  • Menache, M. G., Raabe, O. G., and Miller, F. J. 1996. An empirical dosimetry model of aerodynamic particle deposition in the rat respiratory tract. Inhal. Toxicol. 8:539–576.
  • Penny, D. G. 1988. Hemodynamic response to carbon monoxide. Environ. Health Perspect. 77:121–130.
  • Peterson, J. E., and Stewart, R. D. 1975. Predicting carboxyhemoglobin levels resulting from carbon monoxide exposures.]. Appl. Physiol. 39:633–638.
  • Raabe, O. G., Yeh, H.-C., Newton, G. J., Phalen, R. F., and Velasquez, D. J. 1977. Deposition of inhaled monodisperse aerosols in small rodents. In Inhaled particles, ed. W. H. Walton, pp. 3–21. New York: Pergamon Press.
  • Rabbe, O. G., Al-Bayati, M. A., Teague, S. V., and Rasolt, A. 1988. Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory animals. Ann. Occup. Hyg. 32(51):53–63.
  • Saunders, D. C., and Endecott, B. R. 1991. The effect of elevated temperature on carbon monoxide-induced incapacitaticn. J. Fire Sci. 9:297–310.
  • Saunders, D. C., Endecott, B. R., Ritter, R. M., and Chaturvedi, A. K. 1993. Variations of Time-to-Incapacitation and Carboxyhemoglobin Values in Rats Exposed to Two Carbon Monoxide Concentrations. Department of Transportation Technical Report, DOT/FAA/AM-93/7, PP. 1–11, Al-AS. Washington, DC: U.S. Department of Transportation, Federal Aviation Administration, Office of Aviation Medicine.
  • Schum, G. M., and Yeh, H.-C. 1980. Theoretical evaluation of aerosol deposition in anatomical models of mammalian lung airways. Bull. Math. Biol. 42: 1–15.
  • Sheinson, R. S., Eaton, H. G., Zalosh, R. G., Black, B. H., Brown, R., Burchell, N., Salmon, G., and Smith, W. D. 1993a. Fire extinguishment by fine aerosol generation. Proc. CFC and Ha/on Alternatives Conf., October 20–23, Washington, DC, pp. 1–10. Washington, DC: U.S. Environ-mental Protection Agency.
  • Sheinson, R. S., Eaton, H. G., Black, B. H., Brown, R., Salmon, G., St. Aubin, J., and Smith, W. D. 1993b. Total flooding fire suppressant testing in a 56 m3 (2000 ft3) compartment. Ha/on Options Technical Working Conference Proc., May 11–13, Albuquerque, NM, pp. 137–148. Albuquer-que: University of New Mexico Engineering Research Institute, Center for Global Environmental Technologies.
  • Silbaugh, S. A., and Horvath, S. M. 1982. Effect of acute carbon monoxide exposure on cardiopul-monary function in the awake rat. Toxicol. App/. Pharmacol. 66:376–382.
  • Smith, E. A., Kimmel, E. C., Bowen, L. E., Reboulet, J. E., and Carpenter, R. L. 1997a. Preliminary assessment of a pyrotechnically generated aerosol fire suppressant. lnhal. Toxicol. 9:449–463.
  • Smith, E. A., Kimmel, E. L., English, J. H., Bowen, L. E., Reboulet, J. E., and Carpenter, R. L. 1997b. Evaluation of the respiratory tract after acute exposure to a pyrotechnically generated aerosol fire suppressant.]. App/. Toxicol. 17(2):95–103.
  • Summer, W. R. 1990. Adult respiratory distress syndrome. In Respiratory injury: Smoke inhalation and burns, eds. E. F. Haponik and A. M. Munster, pp. 73-113. New York: McGraw-Hill.
  • Tepper, J. S., Wiester, M. J., King, M. E., Weber, M. F., and Costa, D. L. 1988. Use of carbon dioxide challenge to detect toxicant-induced changes in cardiopulmonary function of awake rats. Inhal. Toxicol. 1:79–95.
  • Tyuma, I., Ueda, Y., Imaizumi, K., and Kosaka, H. 1981. Prediction of carboxyhemoglobin levels during and after carbon monoxide exposures in various animal species. Jpn. J. Physiol. 31:131–143.
  • Wojciak, J. F. 1988. Theoretical and Experimental Analyses of Aerosol Deposition in the Lung: Implications for Human Health Effects. Doctoral dissertation, Departments of Chemical Engi-neering, Pediatrics, an Biophysics, Environmental Health Sciences Center, University of Rochester Rochester, NY.
  • World Health Organization. 1979. Environmental health criteria 13: Carbon monoxide, pp. 1–125. United Nations Environment Programme and the World Health Organization. Geneva: Office of Publications, World Health Organization.
  • Yeh, H.-C. 1980. Respiratory Tract Deposition Models. Lovelace Toxicology Research Institute, Lovelace Biomedical & Environmental Research Institute Technical Report. LC-72, UC-48. Albuquerque: Lovelace Toxicology Research Institute, National Institute of Environmental Health Sciences, National Institute of Environmental Health Sciences, and U.S. Department of Energy.
  • Yeh, H.-C., and Schum, G. M. 1980. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 42: 461–480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.