148
Views
0
CrossRef citations to date
0
Altmetric
Articles

Long-term cortical plasticity following sensory deprivation is reduced in male Rett model mice

&
Pages 133-140 | Received 01 Mar 2022, Accepted 08 Dec 2022, Published online: 24 Dec 2022

References

  • Abdala APL, Dutschmann M, Bissonnette JM, Paton JFR. 2010. Correction of respiratory disorders in a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 107(42):18208–18213.
  • Allen CB, Celikel T, Feldman DE. 2003. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat Neurosci. 6(3):291–299.
  • Amir RE, van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 1999. Rett syndrome is caused by mutations in X-linked Mecp2, encoding methyle-CpG-binding protein2. Nat Genet. 23(2):185–188.
  • Asaka Y, Jugloff DGM, Zhang L, Eubanks JH, Fitzsimonds RM. 2006. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis. 21(1):217–227.
  • Asgarihafshejani A, Nashmi R, Delaney KR. 2019. Cell-genotype specific effects of Mecp2 mutation on spontaneous and nicotinic acetylcholine receptor-evoked currents in medial prefrontal cortical pyramidal neurons in female Rett model mice. Neuroscience. 414:141–153.
  • Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Maffei L, Sale A. 2011. Brain plasticity and disease: a matter of inhibition. Neural Plast. 2011:286073.
  • Bender KJ, Allen CB, Bender VA, Feldman DE. 2006. Synaptic basis for whisker deprivation-induced synaptic depression in rat somatosensory cortex. J Neurosci. 26(16):4155–4165.
  • Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB. 2005. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 102(35):12560–12565.
  • Dolce A, Ben-Zeev B, Naidu S, Kossoff EH. 2013. Rett syndrome and epilepsy: an update for child neurologists. Pediatr Neurol. 48(5):337–345.
  • Drew PJ, Feldman DE. 2009. Intrinsic signal imaging of deprivation-induced contraction of whisker representations in rat somatosensory cortex. Cereb Cortex. 19(2):331–348.
  • Durand S, Patrizi A, Quast KB, Hachigian L, Pavlyuk R, Saxena A, Carninci P, Hensch T/K, Fagiolini M. 2012. NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron. 76(6):1078–1090.
  • Feldman DE. 2000. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron. 27(1):45–56.
  • Feldman DE, Brecht M. 2005. Map plasticity in somatosensory cortex. Science. 310(5749):810–815.
  • Foeller E, Feldman DE. 2004. Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol. 14(1):89–95.
  • Fox K. 2000. Timing is everything. Am J Transplant. 17(6):1433.
  • Fox K. 2002. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience. 111(4):799–814.
  • Frostig R, Chen-Bee C. 2009. Visualizing adult cortical plasticity using intrinsic signal optical imaging. 2nd ed. In: Frostig R, editor. Vivo optical imaging of brain function; p. 255–285.
  • Glaze DG, Percy AK, Skinner S, Motil KJ, Neul JL, Barrish JO, Lane JB, Geerts SP, Annese F, Graham J, et al. 2010. Epilepsy and the natural history of Rett syndrome. Neurology. 74(11):909–912.
  • Glazewski S, Fox K. 1996. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J Neurophysiol. 75(4):1714–1729.
  • Goffin D, Zhou JZ. 2012. The neural circuit bias of Rett syndrome. Front Biol. 7(5):428–435.
  • Hao S, Tang B, Wu Z, Ure K, Sun Y, Tao H, Gao Y, Patel AJ, Curry DJ, Samaco RC, et al. 2016. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Physiol Behav. 176(1):100–106.
  • He LJ, Liu N, Cheng TL, Chen XJ, Li YD, Shu YS, Qiu ZL, Zhang XH. 2014. Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity. Nat Commun. 5:5036.
  • Karaca KG, Brito DVC, Zeuch B, Oliveira AMM. 2018. Adult hippocampal Mecp2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol Learn Mem. 149:84–97.
  • Kee SE, Mou X, Zoghbi HY, Ji D. 2018. Impaired spatial memory codes in a mouse model of Rett syndrome. ELife. 7:1–21.
  • Krishnan K, Wang B-S, Lu J, Wang L, Maffei A, Cang J, Huang ZJ. 2015. MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc Natl Acad Sci USA. 112(34) 10.1073/pnas.1506499112.
  • Krishnan K, Lau BYB, Ewall G, Huang ZJ, Shea SD. 2017. Mecp2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nat Commun. 8:14077.
  • Lau B, Krishnan K, Huang ZJ, Shea SD. 2020. Maternal-experience dependent cortical plasticity in mice is circuit-and stimulus specific and requires MECP2. J Neurosci. 40(3):1514–1526. 10.1523/JNEUROSCI.1964-19.2019.
  • Laurvick CL, de Klerk N, Bower C, Christodoulou J, Ravine D, Ellaway C, Williamson S, Leonard H. 2006. Rett syndrome in Australia: a review of the epidemiology. J Pediatr. 148(3):347–352.
  • Lee L-J, Tsytsarev V, Erzurumlu RS. 2017. Structural and functional differences in the barrel cortex of Mecp2 null mice. J Comp Neurol. 525(18):3951–3961.
  • Li W, Bellot-Saez A, Phillips ML, Yang T, Longo FM, Pozzo-Miller L. 2017. A small-molecule TrkB ligand restores hippocampal synaptic plasticity and object location memory in Rett syndrome mice. Dis Model Mech. 10(7):837–845.
  • Li W, Xu X, Pozzo-Miller L. 2016. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors. Proc Natl Acad Sci USA. 113(11):E1575–E1584.
  • Liao W, Gandal MJ, Ehrlichman RS, Siegel SJ, Carlson GC. 2012. Mecp2+/- mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder. Neurobiol Dis. 46(1):88–92.
  • Lo FS, Blue ME, Erzurumlu RS. 2016. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice. J Neurophysiol. 115(3):1298–1306.
  • Martin-Cortecero J, Nuñez A. 2014. Tactile response adaptation to whisker stimulation in the lemniscal somatosensory pathway of rats. Brain Res. 1591(1):27–37.
  • Morello N, Schina R, Pilotto F, Phillips M, Melani R, Plicato O, Pizzorusso T, Pozzo-Miller L, Giustetto M. 2018. Loss of Mecp2 causes atypical synaptic and molecular plasticity of parvalbumin-expressing interneurons reflecting Rett syndrome–like sensorimotor defects. eNeuro. 5(5):ENEURO.0086-18.2018.
  • Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt JD, Zoghbi HY. 2006. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci. 26(1):319–327.
  • Na ES, Nelson ED, Kavalali ET, Monteggia LM. 2013. The impact of MeCP2 loss-or gain-of-function on synaptic plasticity. Neuropsychopharmacology. 38(1):212–219.
  • Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey MES, Schanen NC, Zappella M, RettSearch Consortium, et al. 2010. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 68(6):944–950.
  • Neul JL. 2012. The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci. 14(3):253–262.
  • Orefice LLL, Zimmerman ALL, Chirila AMM, Sleboda SJJ, Head JPP, Ginty DDD. 2016. Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDS. Cell. 166(2):299–313.
  • Oshikawa H, Kaga M, Suzuki H, Sakuragawa N, Arima M. 1991. Giant somatosensory evoked potentials in the Rett syndrome. Brain Dev. 13(1):36–39.
  • Patrizi A, Awad PN, Chattopadhyaya B, Li C, Di Cristo G, Fagiolini M. 2020. Accelerated hyper-maturation of parvalbumin circuits in the absence of MeCP2. Cereb Cortex. 30(1):256–268.
  • Picard N, Fagiolini M. 2019. MeCP2: an epigenetic regulator of critical periods. Curr Opin Neurobiol. 59:95–101.
  • Polley DB, Chen-Bee CH, Frostig RD. 1999. Two directions of plasticity in the sensory-deprived adult cortex and behavior effects of sensory deprivation were first demonstrated Center for the Neurobiology in the developing visual cortex following the disruption of learning and memory of normal vision. Neuron. 24(3):623–637.
  • Robinson HA, Pozzo-Miller L. 2019. The role of MeCP2 in learning and memory. Learn Mem. 26(9):343–350.
  • Sermet BS, Truschow P, Feyerabend M, Mayrhofer JM, Oram TB, Yizhar O, Staiger JF, Petersen CCH. 2019. Pathway-, layer-and cell-type-specific thalamic input to mouse barrel cortex. ELife. 8:1–28.
  • Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, Andrew R, Bird AP. 2010. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 37(4):457–468.
  • Su F-C, Su S-H, Carlson GC, Liao W. 2015. MeCP2-mediated alterations of striatal features underly many psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 220(1):419–434.
  • Sysoeva OV, Smirnov K, Stroganova TA. 2020. Sensory evoked potentials in patients with Rett syndrome through the lens of animal studies: systematic review. Clin Neurophysiol. 131(1):213–224.
  • Taneja P, Ogier M, Brooks-Harris G, Schmid DA, Katz DM, Nelson SB. 2009. Pathophysiology of locus ceruleus neurons in a mouse model of Rett syndrome. J Neurosci. 29(39):12187–12195.
  • Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Dong DF, Flannery R, Jaenisch R, Sur M. 2009. Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 106(6):2029–2034.
  • Wallace H, Glazewski S, Liming K, Fox K. 2001. The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex. J Neurosci. 21(11):3881–3894.
  • Wilbrecht L, Holtmaat A, Wright N, Fox K, Svoboda K. 2010. Structural plasticity underlies experience-dependent functional plasticity of cortical circuits. J Neurosci. 30(14):4927–4932.
  • Zhang Y, Zhu Y, Cao SX, Sun P, Yang JM, Xia YF, Xie S, Yu XD, Fu JY, Shen CJ, et al. 2020. Mecp2 in cholinergic interneurons of nucleus accumbens regulates fear learning. ELife. 9:1–21.
  • Zhang ZW, Zak JD, Liu H. 2010. MeCP2 is required for normal development of GABAergic circuits in the thalamus. J Neurophysiol. 103(5):2470–2481.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.