995
Views
0
CrossRef citations to date
0
Altmetric
Articles

The lower labile carbon of surface soils in Chinese semiarid areas

, , , &
Pages 34-41 | Received 21 Nov 2022, Accepted 24 Jan 2023, Published online: 11 Feb 2023

References

  • Bahadori M, Chen C, Lewis S, Boyd S, Rashti MR, Esfandbod M, Garzon-Garcia A, Zwieten LV, Kuzyakov Y. 2021. Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses. Sci Total Environ. 770:145307.
  • Bongiorno G, Bünemann EK, Oguejiofor CU, Meier J, Gort G, Comans R, Mäder P, Brussaard L, Goede R. 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol Indic. 99:38–50.
  • Brooks JR, Meinzer FC, Coulombe R, Gregg J. 2002. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol. 22:1107–1117.
  • Cepáková Š, Tošner Z, Frouz J. 2016. The effect of tree species on seasonal fluctuations in water-soluble and hot water-extractable organic matter at post-mining sites. Geoderma. 275:19–27. doi:10.1016/j.geoderma.2016.04.006.
  • Delgado-Baquerizo M, Eldridge DJ, Maestre FT, Karunaratne SB, Trivedi P, Reich PB, Singh BK. 2017. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci Adv. 3:e1602008.
  • Doetterl S, Stevens A, Six J, Merckx R, Oost KV, Pinto MC, Casanova-Katny A, Muñoz C, Boudin M, Venegas EZ, Boeckx P. 2015. Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci. 8:780–783.
  • Eldridge DJ, Delgado-Baquerizo M, Quero JL, Ochoa V, Gozalo B, García-Palacios P, Escolar C, García-Gómez M, Prina A, Bowker MA, et al. 2020. Surface indicators are correlated with soil multifunctionality in global drylands. J Appl Ecol. 57:424–435.
  • Ghani A, Dexter M, Perrott KW. 2003. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem. 35:1231–1243.
  • Haynes PJ, Francis GS. 1993. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. Journal of Soil Science. 44:665–675.
  • Heller C, Weiß K. 2015. Approaching a standardized method for the hot-water-extraction of peat material to determine labile SOM in organic soils. Commun Soil Sci Plant Anal. doi:10.1080/00103624.2015.1019082.
  • Jiang Q, Xu Z, Hao Y, Dong H. 2017. Dynamics of soil labile carbon and nitrogen pools in riparian zone of Wyaralong Dam in Southeast Queensland, Australia. J Soils Sediments. 17:1030–1044.
  • Jones DL, Nguyen C, Finlay RD. 2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil. 321:5–33.
  • Kalisz B, Lachacz A, Glazewski R. 2015. Effects of peat drainage on labile organic carbon and water repellency in NE Poland. Turk J Agric For. 39:20–27. doi:10.3906/tar-1402-66.
  • Kuzyakov Y, Domanski G. 2000. Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci. 163:421–431.
  • Landgraf D, Leinweber P, Makeschin F. 2006. Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. J Plant Nutr Soil Sci. 169:76–82. doi:10.1002/jpln.200521711.
  • Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel JP, Torn MS, et al. 2020. Persistence of soil organic carbon caused by functional complexity. Nat Geosci. 13:529–534.
  • Leinweber P, Schulten HR, Körschens M. 1995. Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment. Biol Fertil Soils. 20:17–23.
  • Nguyen-Sy T, Cheng W, Kimani SM, Shiono H, Sugawara R, Tawaraya K, Watanabe T, Kumagai K. 2020. Stable carbon isotope ratios of water-extractable organic carbon affected by application of rice straw and rice straw compost during a long-term rice experiment in Yamagata, Japan. Soil Sci Plant Nutr. doi:10.1080/00380768.2019.1708209.
  • Pausch J, Kuzykov Y. 2018. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glb Chg Bio. 24:1–12.
  • Rodriguez AF, Gerber S, Inglett PW, Tran NT, Long JR, Daroub AH. 2021. Soil carbon characterization in a subtropical drained peatland. Geoderma. 382:114758. doi:10.1016/j.geoderma.2020.114758.
  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature. 478:49–56.
  • Šeremešić S, Milošev D, Sekulić P, Nešić L, Ćirić V. 2013. Total and hot-water extractable carbon relationship in chernozem soil under different cropping systems and land use. J Cent Eur Agric. 14(4):1479–1487. doi:10.5513/JCEA01/14.4.1382.
  • Singh S, Mayes MA, Shekoofa A, Kivlin SN, Bansal S, Jagadamma S. 2021. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions. Sci Rep. 11:10841.
  • Spohn M, Giani L. 2011. Total, hot water extractable, and oxidation-resistant carbon in sandy hydromorphic soils-analysis of a 220-year chronosequence. Plant Soil. 338:183–192.
  • Walter H, Harnickell E, Mueller-Dombois D. 1975. Climate-diagram maps. Ind. Countries and the ecological climatic regions of the Earth supplement to the vegetation monographs. 8(11):1–4.
  • Wang QK, Wang SL. 2007. Soil organic matter under different forest types in Southern China. Geoderma. 142:349–356.
  • Wang K, Wang K, Peng N, Lv H, Xie X. 2007. Water extractable carbon in red soil of paddy field. Chin J Soil Sci. 38(3):447–451. in Chinese.
  • Wiesmeier M, Munro S, Barthold F, Steffens M, Shad P, Kögel-Knabner I. 2015. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Glb Chg Bio. 21:3836–3845.
  • Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, Buegger F, Pouteau V, Chenu C, Mueller CW. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat Commun. 12:4115.
  • Yao L, Rashti MR, Brough DM, Burford MA, Liu W, Liu G, Chen C. 2019. Stoichiometric control on riparian wetland carbon and nutrient dynamics under different land uses. Sci Total Environ. 697:134127.
  • Zhang F, Li C, Wang Z, Glidden S, Grogan DS, Li X, Cheng Y, Frolking S. 2015. Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981-2000. Ecol Modell. 312:1–10. doi:10.1016/j.ecolmodel.2015.05.006.
  • Zhang J, Wang S, Wang Q, Liu Y. 2009. Content and seasonal change in soil labile organic carbon under different forest covers. Chin J Eco-Agric. 17(1):41–47. in Chinese.
  • Zhou X, Chen C, Wang Y, Xu Z, Duan J, Hao Y, Smaill S. 2013. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland. Geoderma. 206:24–31. doi:10.1016/j.geoderma.2013.04.020.
  • Zhu E, Cao Z, Jia J, Liu C, Zhang Z, Wang H, Dai G, He J, Feng X. 2021. Inactive and inefficient: warming and drought effect on microbial carbon processing in alpine grassland at depth. Glb Chg Bio. 27:2241–2253. doi:10.1111/gcb.15541.