1,906
Views
0
CrossRef citations to date
0
Altmetric
Articles

P-fertiliser and rhizobial inoculation increased the concentration of mineral nutrients in the rhizosphere of two chickpea genotypes

ORCID Icon, , &
Pages 94-101 | Received 31 Oct 2022, Accepted 28 Mar 2023, Published online: 30 Apr 2023

References

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D. 2018. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management systems. Front Microbiol. 9:1606.
  • Bolan NS, Elliot J, Gregg PEH, Weil S. 1997. Enhanced dissolution of phosphate rocks in the rhizosphere. Biol Fertil Soils. 24:169–174.
  • Bray EM, Kurtz LT. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 59:39–45.
  • Bremmer JM, Mulvaney DCS. 1982. Nitrogen-total. In: A. L. Page, R. H. Miller, D. R. Keeney, editor. Methods of soil analysis. Madison, WI: American Society of Agronomy and Soil Science Society of America; p. 595–624.
  • Chairidchai P, Ritchie GSP. 1990. Zinc adsorption by a lateritic soil in the presence of organic ligands. Soil Sci Soc Am. 54:1242–1248.
  • Crowley DE. 2006. Microbial siderophores in the plant rhizosphere. In: L. L Barton, L. Abadia, editor. Iron nutrition in plants and rhizospheric microorganisms. Dordrecht: Springer; p. 169–198.
  • Dakora FD, Phillips DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil. 245:35–47.
  • Du Plessis SF, Burger RDT. 1964. A comparison of chemical extraction methods for the evaluation of phosphate availability of topsoil. South Afr J Agric Sci. 8:11–13.
  • Eissenstat DM. 1992. Costs and benefits of constructing roots of small diameter. J Plant Nutr. doi:10.1080/0190416920936436.1.
  • Fey MV. 2010. Soils of South Africa. Cape Town: Cambridge University Press.
  • FSSA (Fertilizer Society of South Africa. 1974. Manual of soil analysis methods no. 37. Pretoria: Fertilizer Society of South Africa.
  • Li SM, Li L, Zhang FS, Tang C. 2004. Acid phosphatase role in chickpea/maize intercropping. Ann Bot. doi:10.1093/aob1mch140.
  • Lusiba S, Odhiambo J, Ogola J. 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Arch Agron Soil Sci. 63:477–490.
  • Lusiba SG, Odhiambo JJO, Adeleke R, Maseko ST. 2021. The potential of biochar to enhance concentration and utilization of selected macro and micronutrients for chickpea (Cicer arietinum) in three contrasting soils. Rhizosphere. doi:10.1016/j.rhisph.2020.100289.
  • Macil PJ, Ogola JBO, Odhiambo JJO, Lusiba SG. 2017. The response of some physiological traits of chickpea (Cicer arietinum L.) to biochar and phosphorus fertilizer application. Legume Res. 40(2):299–305.
  • Madzivhandila T, Ogola JBO, Odhiambo JJO. 2012. Growth and yield response of four chickpea cultivars to phosphorus fertilizer rates. J Food Agric Environ. 10:451–455.
  • Makonya GM, Ogola JBO, Muasya AM, Crespo O, Maseko S, Valentine AJ, Ottosen C, Rosenqvist E, Chimphango SBM. 2019. Chlorophyll fluorescence and carbohydrate concentration as field selection traits for heat tolerant chickpea genotypes. Plant Physiol Biochem. 141:172–182.
  • Maselesele D, Ogola JBO, Murovhi RN. 2021. Macadamia husk compost improved physical and chemical properties of a sandy loam soil. Sustainability. doi:10.3390/Su13136997.
  • Mohale KC, Belane AK, Dakora FD. 2014. Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranean L. Verdc) grown in farmers’ fields in South Africa, measured using 15N and 13C natural abundance. Biol Fertil Soils. 50:307–319.
  • Moloto RM, Dakora FD, Soundy P, Maseko ST. 2021. Effects of biostimulants on tissue and rhizospheric acid phosphatase activity of chickpea genotypes. South Afr J Plant Soil. 38:180–183.
  • Motseo NM. 2019. Effect of phosphorus and biofertilizers on the growth, grain yield and rhizosphere mineral accumulation in chickpea genotypes grown at Klipplaatdrift and Bon Accord, South Africa. MTech diss., Tshwane University of Technology.
  • Mpai T, Maseko ST. 2018. Possible benefits and challenges associated with production of chickpea in inland South Africa. Acta Agric Scand Sect B Soil Plant Sci. 68(6):479–488.
  • Musinguzi P, Tenywa JS, Ebanyat P, Tenywa MM, Mubiru DN, Basamba TA, Leip A. 2013. Soil organic carbon thresholds and nitrogen management in tropical agroecosystems: concepts and prospects. J Sustain Develop. 6(12):31–43.
  • Nelson DW, Sommers LE. 1982. Total carbon, organic carbon and organic matter. In: A. L. Page, R. H. Miller, D. R. Keeney, editor. Methods of soil analysis: chemical and microbiological properties. Madison, WI: Agronomy Society of America. doi:10.2134/agronmonogra.2.2ed.c29
  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ. 2005. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil. 271:175–187.
  • Ogola JBO, Madzivhandila T, Odhiambo JO. 2013. Water use efficiency of chickpea (Cicer arietinum L.): response to genotype and phosphorus fertilizer rates in winter and summer sowings. J Food Agric Environ. 11:1341–1347.
  • Pang J, Zhao H, Bansal R, Bohuon E, Lambers H, Ryan MH, Siddique KHM. 2017. Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant Cell Environ. 419:2069–2079.
  • Schutz L, Gattinger A, Meier M, Muller A, Boller T, Mader P, Mathimaran N. 2018. Improving crop yield and nutrient use efficiency via biofertilization – a global meta-analysis. Front Plant Sci. doi:10.3389/fpls.2017.02204.
  • Shen H, Yan X, Zhao M, Zheng S, Wang X. 2002. Exudation of organic acids in common bean as related to mobilization of aluminium-and iron-bound phosphates. Environmental and Experimental Botany. 48: 1–9.
  • Simpson RJ, Oberson A, Culvenor RA. 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil. 32:89–120.
  • Sparks DL. 1996. Methods of soil analysis. Madison: Soil Science Society of America.
  • Tadross MA, Gutowski WJ, Jr Hewitson BC, Jack CJ, New M. 2006. MM5 simulations of interannual change and the diurnal cycle of southern African regional climate. Theor Appl Climatol. 86:63–80.
  • Thonar C, Lekfeldt JDS, Cozzolino V, Kundel D, Kulhánek M, Mosimann C, Neumann G, Piccolo A, Rex M, Symanczik S, Walder F. 2017. Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chem Biol Technol Agric. 4:7.
  • Trierweiler JF, Lindsay WL. 1969. EDTA-Ammonium carbonate soil test for zinc. Soil Sci Soc Am J. 33(1):49–54.
  • Wolde-meskel E, van Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, Wakweya K, Kanampiu F, Giller KE. 2018. Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ. 261:144–152.
  • Xue Y, Xia H, Christie P, Zhang Z, Li L, Tang C. 2016. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann Bot. 117(3):363–377.
  • Zhang D, Zhang C, Tang X, Li H, Zhang F, Rengel Z, Whalley WR, Davies WJ, Shen J. 2015. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. doi:10.1111/nph.13613.
  • Zhu Q, Kong LJ, Shan Y, Yao X, Zhang H, Xie F, AO X. 2019. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. J Integr Agric. 18(10):2242–2254.