811
Views
0
CrossRef citations to date
0
Altmetric
Articles

Alpha-, gamma- and beta-proteobacteria detected in legume nodules in Latvia, using full-length 16S rRNA gene sequencing

, , &
Pages 127-141 | Received 23 Mar 2023, Accepted 29 Jun 2023, Published online: 15 Jul 2023

References

  • Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 8:971. doi:10.3389/fmicb.2017.00971.
  • Angus AA, Hirsch AM. 2010. Insights into the history of the legume-betaproteobacterial symbiosis. Mol Ecol. 19(1):28–30. doi:10.1111/j.1365-294X.2009.04459.x.
  • Bontemps C, Elliott GN, Simon MF, Dos Reis Junior FB, Gross E, Lawton RC, Neto NE, de Fatima Loureiro M, de Faria SM, Sprent JI, James EK, Young JPW. 2010. Burkholderia species are ancient symbionts of legumes. Mol. Ecol. 19(1):44-52. doi:10.1111/j.1365-294X.2009.04458.x.
  • Browman B, Kim B, Cho YJ, Korlach J. 2015. Long-Read, single-molecule, real-time (SMRT) DNA rivera sequencing for metagenomic applications. In: Izard J, Rivera MC, editor. Metagenomics for microbiology. London: Elsevier; p. 25–38. doi:10.1016/B978-0-12-410472-3.00002-6.
  • Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C. 2003. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in Nature. J Bacteriol. 185(24):7266–7272. doi:10.1128/JB.185.24.7266-7272.2003.
  • De Meyer S, De Beuf K, Vekeman B, Willems A. 2015. A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem. 83:1–11. doi:10.1016/j.soilbio.2015.01.002.
  • Dubova L, Alsina I, Sergejeva D, Šenberga A. 2015a. Rhizobium leguminosarum un Glomus sp. effect on faba bean growth (in Latvian: Rhizobium leguminosarum un Glomus sp. ietekme uz cūku pupu augšanu). In Latvijas Lauksaimniecības universitātes Lauksaimniecības fakultātes, Latvijas Agronomu biedrības un Latvijas Lauksaimniecības un meža zinātņu akadēmijas zinātniski praktiskās konferences “Līdzsvarota Lauksaimniecība” raksti. p. 121–126.
  • Dubova L, Šenberga A, Alsiņa I, Sergejeva D. 2016. Evaluation of the efficiency of the symbiotic system in bean (Vicia faba L.) crops (in Latvian: Simbiotiskās sistēmas efektivitātes izvērtējums pupu (Vicia faba L.) sējumos). Ražas svētki “Vecauce – 2016: Lauksaimniecības zinātne nozares attīstībai”, rakstu krājums. p. 20–23. ISBN: 9789984482408.
  • Dubova L, Šenberga A, Alsiņa I. 2015b. The effect of double inoculation on the broad beans (Vicia faba L.) yield quality. Res Rural Dev. 1:34–39.
  • Dubova L. 2020. Effects of symbiotic associations on bean (Vicia faba L.) productivity (in Latvian: Simbiotisko asociāciju ietekme uz pupu (Vicia faba L.) produktivitāti) [PhD thesis]. Latvia University of Agriculture. p. 126
  • Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL, Palmer JN, Workman AD, Blasetti M, Sen B, et al. 2018. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome. 6. doi:10.1186/s40168-018-0569-2.
  • Goel AK, Sindhu SS, Dadarwal KR. 2002. Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils. 36:391–396. doi:10.1007/s00374-002-0554-5.
  • Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, Richards VP. 2022. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome. 10:104. doi:10.1186/s40168-022-01295-y.
  • Ibrahim M, Iqbal M, Tang YT, Khan S, Guan DX, Li G. 2022. Phosphorus mobilization in plant–soil environments and inspired strategies for managing phosphorus: a review. Agronomy. 12:2539–2022. doi:10.3390/agronomy12102539.
  • Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 45(9):2761–2764. doi:10.1128/JCM.01228-07.
  • Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, et al. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 10:5029. doi:10.1038/s41467-019-13036-1.
  • Kawaka F, Makonde H, Dida M, Opala P, Ombori O, Maingi J, Muoma J. 2018. Genetic diversity of symbiotic bacteria nod-ulating common bean (Phaseolus vulgaris) in western Kenya. PLoS One. 13(11):e0207403. doi:10.1371/journal.pone.0207403.
  • Kim KY, Jordan D, Krishnan HB. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett. 153:273–277. doi:10.1016/S0378-1097(97)00246-2.
  • Leite J, Fischer D, Rouws LFM, Fernandes-Júnior PI, Hofmann A, Kublik S, Schloter M, Xavier GR, Radl V. 2017. Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front Plant Sci. 7:2064. doi:10.3389/fpls.2016.02064.
  • Martinez-Hidalgo P, Hirsch AM. 2017. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J. 1:70–82. doi:10.1094/PBIOMES-12-16-0019-RVW.
  • Martinez-Hidalgo P, Humm EA, Still DW, Shi B, Pellegrini M, de la Roca G, Veliz E, Maymon M, Bru P, Huntemann M, et al. 2022. Medicago root nodule microbiomes: insights into a complex ecosystem with potential candidates for plant growth promotion. Plant Soil. 471:507–526. doi:10.1007/s11104-021-05247-7.
  • Mora Y, Díaz R, Vargas-Lagunas C, Peralta H, Guerrero G, Aguilar A, Encarnación S, Girard L, Mora J. 2014. Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol. 80:5644–5654. doi:10.1128/AEM.01491-14.
  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C. 2001. Nodulation of legumes by members of the β-subclass of prote-obacteria. Nature. 411:948–950. doi:10.1038/35082070.
  • Naveed M, Mehboob I, Hussain MB, Zahir ZA. 2014. Perspectives of rhizobial inoculation for sustainable crop production. In: Arora NK, editor. Plant microbes symbiosis: Applied facts. New Dehli: Springer India; p. 209–239. doi:10.1007/978-81-322-2068-8_11.
  • Österman J, Marsh J, Laine PK, Zeng Z, Alatalo E, Sullivan JT, Young JPW, Thomas-Oates J, Paulin L, Lindström K. 2014. Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors. BMC Genom. 15:500. doi:10.1186/1471-2164-15-500.
  • Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jiménez-Guerrero L, López-Baena FJ, Ollero FJ, Cubo T. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol Res. 169:325–336. doi:10.1016/j.micres.2013.09.011.
  • Petrēvics P. 2021. The effect of symbiosis on soybean yield and its formation in the farm SIA “Ezermaļi-3” (in Latvian: Simbiozes ietekme uz sojas ražu un tās formēšanos zemnieku saimniecībā SIA „Ezermaļi-3”). Studentu un maģistrantu zinātniskās konferences Daudzveidīga lauksaimniecība, Jelgava.
  • Pongsilp N. 2012. Phenotypic and genotypic diversity of rhizobia. Nakhon Pathom: Bentham eBooks. p. 194
  • Pootakham W, Mhuantong W, Yoocha T, Putchim L, Chutima S, Chaiwat N, Thongtham N, Tangphatsornruang S. 2017. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci Rep. 7:2774. doi:10.1038/s41598-017-03139-4.
  • Rahal S, Chekireb D. 2021. Diversity of rhizobia and non-rhizobia endophytes isolated from root nodules of Trifolium sp. growing in lead and zinc mine site Guelma, Algeria. Arch Microbiol. 203(7):3839–3849. doi:10.1007/s00203-021-02362-y.
  • Ramirez MDA, Espana M, Aguirre C, Kojima K, Ohkama-Ohtsu N, Sekimoto H, Yokoyama T. 2019. Burkholderia and paraburkholderia are predominant soybean rhizobial genera in Venezuelan soils in different climatic and topographical regions. Microbes Environ. 34(1):43–58. doi:10.1264/jsme2.ME18076.
  • Rosselli R, Romoli O, Vitulo N, Vezzi A, Campanaro S, de Pascale F, Schiavon R, Tiarca M, Poletto F, Concheri G, et al. 2016. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Sci Rep. 6:32165. doi:10.1038/srep32165.
  • Saidi S, Chebil S, Gtari M, Mhamdi R. 2013. Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol. 29(6):1099–1106. doi:10.1007/s11274-013-1278-4.
  • Saleh MA, Zaman S, Kabir G. 2013. Yield response of black gram to inoculation by different Rhizobium strains using various types of adhesives. Asian J Biol Sci. 6(3):181–186. doi:10.3923/ajbs.2013.181.186.
  • Šenberga A, Dubova L, Alsiņa I, Strauta L. 2017. Rhizobium sp. – a potential tool for improving protein content in peas and faba beans. Rural Sustain Res. 37(332):2–9. doi:10.1515/plua-2017-0001.
  • Shiraishi A, Matsushita N, Hougetsu T. 2010. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol. 33:269–274. doi:10.1016/j.syapm.2010.04.005.
  • Shoebitz M, Ribaudo CM, Pardo MA, Cantorec ML, Ciampia L, Curáb JA. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem. 41:1768–1774. doi:10.1016/j.soilbio.2007.12.031.
  • Singer E, Buchnell B, Coleman-Derr D, Browman B, Bowers RM, Levy A, Gies EA, Chen JF, Copeland A, Klenk HP, Hallam SJ, Hugenholtz P, Tringe SG, Woyke T. 2016. High resolution phylogenetic microbial community profiling. ISME J. 10(8):2020–2032. doi:10.1038/ismej.2015.249.
  • Sleator RD. 2011. Phylogenetics. Arch. Microbiol. 193:235-293. doi:10.1007/s00203-011-0677-x.
  • Tampakaki AP, Alsina I, Ntatsi G. 2014. Working with rhizobia. In: Marques G, Tampakaki AP, Alsina I, editor. Working with microbial symbioses of legumes: Handbook of protocols. p. 10–34. Deliverable D3.1, FP7 Research Project no. 613781, Portugal (Vila Real), Greece (Athens), Latvia (Jelgava). https://www.lf.llu.lv/sites/lf/files/2017-01/Eurolegume%20D3%201%20-%20Handbook%20of%20protocols.pdf.
  • Timofeeva A, Sedkykh S. 2022. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants. 11(16):2119. doi:10.3390/plants11162119.
  • Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255:571–586. doi:10.1023/A:1026037216893.
  • Wagner J, Coupland P, Browne HP, Lawley TD, Francis SC, Parkhill J. 2016. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol. 16:274. doi:10.1186/s12866-016-0891-4.
  • Wagner SC. 2011. Biological nitrogen fixation. Nat Educ Knowl. 3(10):15. http://www.nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419.
  • Wang ET, Chen WT, Tian CF, Young JPW, Chen WX. 2019. Symbiosis between rhizobia and legumes. In: Wang ET, Tian CF, Chen WF, Young JPW, Chen WX, editor. Ecology and evolution of rhizobia. Singapore: Springer; p. 3–19.
  • Zineb AB, Trabelsi D, Ayachi I, Barhoumi F, Aroca R, Mhamdi R. 2020. Inoculation with elite strains of phosphate-solubilizing bacteria enhances the effectiveness of fertilisation with rock phosphates. Geomicrobiol J. 37:22–30. doi:10.1080/01490451.2019.1658826.