604
Views
0
CrossRef citations to date
0
Altmetric
Articles

What must be considered in winter strawberry production under LEDs in Iceland?

ORCID Icon
Pages 152-160 | Received 02 Jul 2023, Accepted 21 Aug 2023, Published online: 01 Sep 2023

References

  • Appolloni E, Orsini F, Pennisi G, Gabarrell DX, Paucek I, Gianquinto G. 2021. Supplemental LED lighting effectively enhances the yield and quality of greenhouse truss tomato production: results of a meta-analysis. Front Plant Sci. 12. doi:10.3389/fpls.2021.596927.
  • Bantis F, Smirnakou S, Ouzounis T, Koukounaras A, Ntagkas N, Radoglou K. 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci Hortic. 235:437–451. doi:10.1016/j.scienta.2018.02.058.
  • Brown CS, Schuerger AC, Sager JC. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Amer Soc Hort Sci. 120:808–813. doi:10.21273/JASHS.120.5.808.
  • Choi HG, Moon BY, Kang NJ. 2015. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci Hortic. 189:22–31. doi:10.1016/j.scienta.2015.03.022.
  • Davis PA, Burns C. 2016. Photobiology in protected horticulture. Food Energy Sec. 5:223–238. doi:10.1002/fes3.97.
  • Dueck TA, Janse J, Eveleens BA, Kempkes FLK, Marcelis LFM. 2012a. Growth of tomatoes under hybrid LED and HPS lighting. Acta Hortic. 952:335–342. doi:10.17660/ActaHortic.2012.952.42.
  • Dueck TA, Janse J, Li T, Kempkes F, Eveleens B. 2012b. Influence of diffuse glass on the growth and production of tomato. Acta Hortic. 956:75–82. doi:10.17660/ActaHortic.2012.956.6.
  • Dysko J, Kaniszewski S. 2021. Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers. Hortic Sci. 48:22–29. doi:10.17221/4/2020-HORTSCI.
  • Folta KM, Childers KS. 2008. Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience. 43:1957–1964. doi:10.21273/HORTSCI.43.7.1957.
  • Gómez C, Morrow RC, Bourget CM, Massa GM, Mitchell CA. 2013. Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. HortTechnology. 23:93–98. doi:10.21273/HORTTECH.23.1.93.
  • Gruda N. 2005. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit Rev Plant Sci. 24:227–247. doi:10.1080/07352680591008628.
  • Guiamba HDSS, Zhang X, Sierka E, Lin K, Ali MM, Ali WM, Lamlom SF, Kalaji HM, Telesiński A, Yousef AF, Xu Y. 2022. Enhancement of photosynthesis efficiency and yield of strawberry (Fragaria ananassa Duch.) plants via LED systems. Front Plant Sci. 13:1–17. doi:10.3389/fpls.2022.918038.
  • Halldórsdóttir ÞÓ, Nicholas KA. 2016. Local food in Iceland: identifying behavioral barriers to increased production and consumption. Environ Res Lett 11:115004. doi:10.1088/1748-9326/11/11/115004.
  • Hernández R, Kubota C. 2015. Physiological, morphological, and energy-use efficiency comparisons of LED and HPS supplemental lighting for cucumber transplant production. HortScience. 50:351–357. doi:10.21273/HORTSCI.50.3.351.
  • Hidaka K, Dan K, Miyoshi Y, Imamura H, Takayama T, Kitano M, Sameshima K, Okimura M. 2016. Twofold increase in strawberry productivity by integration of environmental control and movable beds in a large-scale greenhouse. Environ Control Biol 54:79–92. doi:10.2525/ecb.54.79.
  • Kuijpers WJ, Katzin D, van Mourik S, Antunes DJ, Hemming S, van de Molengraft MJG. 2021. Lighting systems and strategies compared in an optimally controlled greenhouse. Biosystems Eng. 202:195–216. doi:10.1016/j.biosystemseng.2020.12.006.
  • Paponov M, Kechasov D, Lacek J, Verheul MJ, Paponov IA. 2019. Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Front Plant Sci 10:1656. doi:10.3389/fpls.2019.01656.
  • Philips. 2015. The ideal replacement for the incandescent lamp. https://www.brookberries.nl/wp-content/uploads/2018/10/Philips-LED_casestudy-brookberries-en.pdf Accessed 27.06.2023.
  • Rakutko S, Avotins A, Gruduls J, Rakutko E. 2020. Hybride irradiation as best available practice in artificial plant lighting. In: 19th International Scientific Conference “Engineering for Rural Development”: Proceedings. Vol.19, Latvia, Jelgava, Latvia University of Life Sciences and Technologie, 20-22 May 2020. 1076-1081. doi:10.22616/ERDev2020.19.TF254.
  • Särkkä LE, Jokinen K, Ottosen CO, Kaukoranta T. 2017. Effects of HPS and LED lighting on cucumber leaf photosynthesis light quality penetration and temperature in the canopy, plant morphology and yield. Agricult Food Sci. 26:102–110. doi:10.23986/afsci.60293.
  • Simpson D. 2018. The economic importance of strawberry crops. In: Hytönen T, Graham J, Harrison R (eds). The genomes of rosaceous berries and their wild relatives. Compendium of plant genomes. Cham: Springer. doi:10.1007/978-3-319-76020-9_1.
  • Singh D, Basu C, Meinhardt-Wollweber M, Roth B. 2015. LEDs for energy efficient greenhouse lighting. Renew Sust Energ Revi. 49:139–147. doi:10.1016/j.rser.2015.04.117.
  • Smith H. 1982. Light quality, photoperception, and plant strategy. Annu Rev Plant Physiol. 33:481–518. doi:10.1146/annurev.pp.33.060182.002405.
  • Stadler C. 2017. Effect of light intensity on yield of winter grown strawberries in Iceland. DGG-Proc. 7:1–5. doi:10.5288/dgg-pr-cs-2017.
  • Stadler C. 2021. Áhrif ljósmeðferðar í forræktun og lýsingarmeðferð í áframhaldandi ræktun á vöxt, uppskeru og gæði gróðurhúsatómata. Final report, Rit LbhÍ nr. 143.
  • Sturludóttir E, Þorvaldsson G, Helgadóttir G, Guðnason I, Sveinbjörnsson J, Sigurgeirsson ÓI, Sveinsson Þ. 2021. Fæðuöryggi á Íslandi. Final report, Rit LbhÍ nr. 139.
  • Tamulaitis G, Duchovskis P, Bliznikas Z, Breive K, Ulinskaite R, Brazaityte A, Novickovas A, Zukauskas A. 2005. High-power light-emitting diode based facility for plant cultivation. J Phys D: Appl Phys 38:3182–3187. doi:10.1088/0022-3727/38/17/S20.
  • Tang Y, Ma X, Li M, Wang Y. 2020. The effect of temperature and light on strawberry production in a solar greenhouse. Sol Energy. 195:318–328. doi:10.1016/j.solener.2019.11.070.
  • Van Delm T, Melis P, Stoffels K, Vanderbruggen R, Baets W. 2016. Advancing the strawberry season in Belgian glasshouses with supplemental assimilation lighting. Acta Hortic 1134:147–154. doi:10.17660/ActaHortic.2016.1134.20.
  • Verheul MJ, Sønsteby A, Grimstad SO. 2007. Influences of day and night temperatures on flowering of Fragaria x ananassa Duch., cvs. Korona and Elsanta, at different photoperiods. Sci Hortic 112:200–206. doi:10.1016/j.scienta.2006.12.022.
  • Verheul MJ, Maessen HFR, Paponov M, Panosyan A, Kechasov D, Naseer M, Paponov IA. 2022. Artificial top-light is more efficient for tomato production than inter-light. Sci Hortic. 291:110537. doi:10.1016/j.scienta.2021.110537.
  • Wacker J-D, Verheul MJ, Righini I, Maessen H, Stanghellini C. 2022. Optimisation of supplemental light systems in Norwegian tomato greenhouses - a simulation study. Biosystems Eng. 215:129–142. doi:10.1016/j.biosystemseng.2021.12.020.
  • Zhong P, Yang S, Qiao R, Wang T. 2011. Effect of light intensity on main quality of strawberry. Southwest China J Agric Sci. 24:1219–1221.