455
Views
0
CrossRef citations to date
0
Altmetric
Articles

The resistance of a trans-critically accelerating ship in shallow water

ORCID Icon, , &
Pages 14-32 | Received 14 Mar 2023, Accepted 26 Jun 2023, Published online: 13 Sep 2023

References

  • Andrun M, Blagojević B, Bašić J. 2018. The influence of numerical parameters in the finite-volume method on the Wigley hull resistance. Proc Inst Mech Eng Part M J Eng Marit Environ. 233(4):1123–1132. doi:10.1177/1475090218812956.
  • ASME (American Society of Mechanical Engineers). 2009. Standard for verification and validation in computational fluid dynamics and heat transfer – ASME V&V 20-2009. ASME International.
  • Barratt MJ. 1965. The wave drag of a Hovercraft. J Fluid Mech. 22:39–47. doi:10.1017/S0022112065000563.
  • Bašić J, Blagojević B, Andrun M. 2020. Improved estimation of ship wave-making resistance. Ocean Eng. 200:107079. doi:10.1016/j.oceaneng.2020.107079.
  • Burmester S, Vaz G, el Moctar O. 2020. Towards credible CFD simulations for floating offshore wind turbines. Ocean Eng. 209:107237. doi:10.1016/j.oceaneng.2020.107237.
  • Calisal S. 1977. Effect of initial acceleration on ship wave pattern and wake survey methods. J Ship Res. 21:239–247. doi:10.5957/jsr.1977.21.4.239.
  • Celik IB, Ghia U, Roache PJ, Freitas C. 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng. 130:078001. doi:10.1115/1.2960953.
  • Day AH, Clelland D, Doctors LJ. 2009. Unsteady finite-depth effects during resistance tests on a ship model in a towing tank. J Mar Sci Technol. 14:387–397. doi:10.1007/s00773-009-0057-2.
  • Doctors LJ. 1975. The experimental wave resistance of an accelerating two-dimensional pressure distribution. J Fluid Mech. 72:513–527. doi:10.1017/S0022112075003114.
  • Doctors LJ. 1993. On the use of pressure distributions to model the hydrodynamics of air-cushion vehicles and surface-effect ships. Nav Eng J. 105:69–89. doi:10.1111/j.1559-3584.1993.tb02264.x.
  • Doctors LJ, Sharma SD. 1972. Wave resistance of an air-cushion vehicle in steady and accelerated motion. J Ship Res. 16(4):248–260. doi:10.5957/jsr.1972.16.4.248.
  • Flagg CN, Newman JN. 1971. Sway added-mass coefficients for rectangular profiles in shallow water. J Ship Res. 15:257–265. doi:10.5957/jsr.1971.15.4.257.
  • Freitas CJ. 2020. Standards and methods for verification, validation, and uncertainty assessments in modeling and simulation. J Verif Valid Uncertain Quantif. 5:1–9. doi:10.1115/1.4047274.
  • Ghassemi H, Yari E. 2011. The added mass coefficient computation of sphere, ellipsoid and marine propellers using boundary element method. Pol Marit Res. 18(1):17–26.
  • Gourlay T, Tuck EO. 2001. The maximum sinkage of a ship. J Ship Res. 45:50–58.
  • Grue J. 2017. Ship generated mini-tsunamis. J Fluid Mech. 816:142–166. doi:10.1017/jfm.2017.67.
  • Haussling HJ, van Eseltine RT. 1978. Waves and wave resistance for air-cushion vehicles with time-dependent cushion pressures. J Ship Res. 22:170–177. doi:10.5957/jsr.1978.22.3.170.
  • Havelock T. 1908. The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling disturbance. Proc R Soc London Ser A Contain Pap Math Phys Character. 81:389–430. doi:10.1098/rspa.1933.0074.
  • Havelock TH. 1949. The resistance of a submerged cylinder in accelerated motion. Q J Mech Appl Math. 2:419–427. doi:10.1093/qjmam/2.4.419.
  • ITTC. 2008. Uncertainty analysis in CFD verification and validation methodology and procedures. 25th ITTC 2008, Resistance Committee 12.
  • ITTC. 2014. ITTC – Recommended procedures and guidelines - practical guidelines for ship CFD applications. 7.5-03-02-03 (Revision 01). 19.
  • ITTC. 2017. Quality system manual recommended procedures and guidelines procedure uncertainty analysis in CFD verification and validation.
  • Javanmard E, Mansoorzadeh S, Mehr JA. 2020. A new CFD method for determination of translational added mass coefficients of an underwater vehicle. Ocean Eng. 215:107857. doi:10.1016/j.oceaneng.2020.107857.
  • Jiang T, Henn R, Sharma SD. 2002. Wash waves generated by ships moving on fairways of varying topography. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, Vol. 2, p. 8–13.
  • Johnson JW. 1957. Ship waves in navigation channels. Coast Eng Proc. 1:40. doi:10.9753/icce.v6.40.
  • Kevorkian J, Yu J. 1989. Passage through the critical froude number for shallow-water waves over a variable bottom. J Fluid Mech. 204:31–56. doi:10.1017/S0022112089001655.
  • Korkmaz KB, Werner S, Sakamoto N, Queutey P, Deng G, Yuling G, Guoxiang D, Maki K, Ye H, Akinturk A, et al. 2021. CFD based form factor determination method. Ocean Eng. 220:108451. doi:10.1016/j.oceaneng.2020.108451.
  • Lataire E, Vantorre M, Delefortrie G. 2012. A prediction method for squat in restricted and unrestricted rectangular fairways. Ocean Eng. 55:71–80. doi:10.1016/j.oceaneng.2012.07.009.
  • Lea GK, Feldman JP. 1972. Transcritical flow past slender ships. 9th Symposium on Naval Hydrodynamics, Washington, DC, p. 1527–1542.
  • Lee BW, Lee C. 2019. Equation for ship wave crests in the entire range of water depths. Coast Eng. 153:103542. doi:10.1016/j.coastaleng.2019.103542.
  • Li M, Yuan Z, Yeung RW. 2019. On unsteady wave-making resistance of an accelerating ship. Proceedings of the ASME 2020 39th International Conference on Fort Lauderdale, Florida, US, p. 1–9.
  • Lunde JK. 1951. On the linearized theory of wave resistance for displacement ships in steady and accelerated motion. Trans Soc Nav Archit Mar Eng. 59:25–76.
  • Lunde JK. 1957. The linearized theory of wave resistance and Its application to ship-shaped bodies in motion on the surface of a deep, previously undisturbed fluid. Soc Nav Archit Mar Eng. 23:1–18.
  • Molland AF, Turnock SR, Hudson DA. 2017. Components of hull resistance. In: Molland AF, Turnock SR, Hudson DA, editors. Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge: Cambridge University Press; p. 12–69. doi:10.1017/9781316494196.005.
  • Newman JN. 2018. Marine hydrodynamics. MIT Press.
  • Peric M. 2019. White paper: full-scale simulation for marine design. Siemens White Paper.
  • Pinkster J. 2004. The influence of a free surface on passing ship effects. Int Ship Prog. 51:314–338.
  • Redekopp LG, You Z. 1995. Passage through resonance for the forced Korteweg-de Vries equation. Phys Rev Lett. 74:5158–5161. doi:10.1103/PhysRevLett.74.5158.
  • Roy CJ, Oberkampf WL. 2002. Verification and validation in computational fluid dynamics. Prog Aerosp Sci. 38:209–272.
  • Shebalov AN. 1970. Theory of ship wave resistance for unsteady motion in still water. University of Michigan's Department of Naval Architecture and Marine Engineering.
  • Song S, Demirel YK, Atlar M. 2019. An investigation into the effect of biofouling on the ship hydrodynamic characteristics using CFD. Ocean Eng. 175:122–137. doi:10.1016/j.oceaneng.2019.01.056.
  • Terziev M, Tezdogan T, Demirel YK, Villa D, Mizzi S, Incecik A. 2021a. Exploring the effects of speed and scale on a ship’s form factor using CFD. Int J Nav Archit Ocean Eng. 13:147–162. doi:10.1016/j.ijnaoe.2020.12.002.
  • Terziev M, Tezdogan T, Incecik A. 2019a. Application of eddy-viscosity turbulence models to problems in ship hydrodynamics. Ships Offshore Struct. 1–24. doi:10.1080/17445302.2019.1661625.
  • Terziev M, Tezdogan T, Incecik A. 2019b. A geosim analysis of ship resistance decomposition and scale effects with the aid of CFD. Appl Ocean Res. 92:1–17. doi:10.1016/j.apor.2019.101930.
  • Terziev M, Tezdogan T, Incecik A. 2020. Modelling the hydrodynamic effect of abrupt water depth changes on a ship travelling in restricted waters using CFD. Ships Offshore Struct. 16(10):1087–1103. doi:10.1080/17445302.2020.1816731.
  • Terziev M, Tezdogan T, Incecik A. 2021b. A numerical assessment of the scale effects of a ship advancing through restricted waters. Ocean Eng. 229:108972. doi:10.1016/j.oceaneng.2021.108972.
  • Terziev M, Tezdogan T, Incecik A. 2022. Scale effects and full-scale ship hydrodynamics: a review. Ocean Eng. 245:110496. doi:10.1016/j.oceaneng.2021.110496.
  • Torsvik T, Dysthe K, Pedersen G. 2006. Influence of variable Froude number on waves generated by ships in shallow water. Phys Fluids. 18:1–18. doi:10.1063/1.2212988.
  • Tuck EO. 1966. Shallow-Water flows past slender bodies. J Fluid Mech. 26:81–95. doi:10.1017/S0022112066001101.
  • Tuck EO. 1967. Sinkage and trim in shallow water of finite width. Schiffstechnik. 14:92–94.
  • Tuck EO. 1978. Hydrodynamic problems of ships in restricted waters. Annu Rev Fluid Mech. 10:33–46.
  • Tuck EO, Taylor JP. 1970. Shallow wave problems in ship hydrodynamics. 8th Symposium Naval Hydrodynamics. p. 627–659.
  • Tunaley JKE. 2014. Ship wakes in shallow waters. LRDC Report, p. 6–9.
  • Wakaba L, Balachandar S. 2007. On the added mass force at finite reynolds and acceleration numbers. Theor Comput Fluid Dyn. 21:147–153. doi:10.1007/s00162-007-0042-5.
  • Wehausen JV. 1961. Effect of the initial acceleration upon the wave resistance of ship models.
  • Wehausen JV. 1964. Effect of the initial acceleration upon the wave resistance of ship models. J Ship Res. 8:38–50. doi:10.5957/jsr.1964.8.1.38.
  • Wilcox DC. 2008. Formulation of the k-w turbulence model revisited. AIAA J. 46:2823–2838. doi:10.2514/1.36541.
  • Yeung RW. 1975. Surface waves due to a maneouvering air-cushion vehicle. J Ship Res. 19:224–242. doi:10.5957/jsr.1975.19.4.224.
  • Yuan ZM. 2019. Ship hydrodynamics in confined waterways. J Ship Res. 63:1–14. doi:10.5957/JOSR.04170020.
  • Yuan ZM, Incecik A, Jia L. 2014. A new radiation condition for ships travelling with very low forward speed. Ocean Eng. 88:298–309. doi:10.1016/j.oceaneng.2014.05.019.
  • Yuan ZM, Li L, Yeung RW. 2019. Free-Surface effects on interaction of multiple ships moving at different speeds. J Ship Res. 63(04)):251–267. doi:10.5957/josr.10180089.
  • Zeng Q, Hekkenberg R, Thill C. 2019. On the viscous resistance of ships sailing in shallow water. Ocean Eng. 190:106434. doi:10.1016/j.oceaneng.2019.106434.