3,350
Views
7
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Physical metallurgy of medium-Mn advanced high-strength steels

ORCID Icon, , , , , , & show all
Pages 786-824 | Received 05 Jun 2022, Accepted 22 Nov 2022, Published online: 12 Jan 2023

References

  • Miller RL. Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall Trans. 1972;3:905–912.
  • Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels. Prog Mater Sci. 2017;89:345–391.
  • Gibbs P. Design considerations for the third generation advanced high strength steel. PhD thesis, Colorado School of Mines; 2012.
  • Hu B, Luo H, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review. J Mater Sci Technol. 2017;33:1457–1464.
  • Kim H, Suh DW, Kim NJ. Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties. Sci Technol Adv Mater. 2013;14:014205.
  • Lee YK, Han J. Current opinion in medium manganese steel. Mater Sci Technol. 2014;31:843–856.
  • Suh D-W, Kim S-J. Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scr Mater. 2017;126:63–67.
  • Suh D-W, Park S-J, Lee T-H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel. Metall Mater Trans A. 2010;41:397–408.
  • Sun B, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels. Acta Mater. 2018;148:249–262.
  • Sun B, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A. 2018;729:496–507.
  • De Moor E, Speer J, Matlock D, et al. Heat treating opportunities for medium manganese steels. Proceedings of the First International Conference on Automobile Steel & the 3rd International Conference on High Manganese Steels, Chengdu, China; 2016: p. 15–18.
  • Han J, Lee S-J, Jung J-G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05 C steel. Acta Mater. 2014;78:369–377.
  • Koyama M, Zhang Z, Wang M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science. 2017;355:1055–1057.
  • Lee S, De Cooman BC. Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel. Metall Mater Trans A. 2014;45:6039–6052.
  • Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination. Science. 2020;368:1347–1352.
  • Seo EJ, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 2016;113:124–139.
  • Sun B, Fazeli F, Scott C, et al. Phase transformation behavior of medium manganese steels with 3 wt pct aluminum and 3 wt pct silicon during intercritical annealing. Metall Mater Trans A. 2016;47:4869–4882.
  • Ding R, Yao Y, Sun B, et al. Chemical boundary engineering: a new route toward lean, ultrastrong yet ductile steels. Sci Adv. 2020;6:eaay1430.
  • Raabe D, Sandlöbes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite. Acta Mater. 2013;61:6132–6152.
  • Da Silva AK, Ponge D, Peng Z, et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat Commun. 2018;9:1137.
  • Belde M, Springer H, Inden G, et al. Multiphase microstructures via confined precipitation and dissolution of vessel phases: example of austenite in martensitic steel. Acta Mater. 2015;86:1–14.
  • Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: confined chemical and structural states at dislocations. Science. 2015;349:1080–1083.
  • Ma Y, Sun B, Schökel A, et al. Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels. Acta Mater. 2020;200:389–403.
  • Sun B, Lu W, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nat Mater. 2021;20:1629–1634.
  • He B, Hu B, Yen H, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science. 2017;357:1029–1032.
  • Sohn SS, Song H, Kwak JH, et al. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Sci Rep. 2017;7:1927.
  • Yang F, Zhou J, Han Y, et al. A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation. Mater Lett. 2020;258:126804.
  • Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications. Mater Sci Technol. 2017;33:1713–1727.
  • Furukawa T, Huang H, Matsumura O. Effects of carbon content on mechanical properties of 5% Mn steels exhibiting transformation induced plasticity. Mater Sci Technol. 1994;10:964–970.
  • Zhao C, Song R, Zhang L, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7 C low-density steel. Mater Des. 2016;91:348–360.
  • Sun B, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. Acta Mater. 2019;164:683–696.
  • Andrews K. Empirical formulae for the calculation of some transformation temperatures. J Iron Steel Inst. 1965;203:721–727.
  • Capdevila C, et al. Determination of Ms temperature in steels: a bayesian neural network model. ISIJ international. 2002;42:894–902.
  • Grange R, Stewart H. The temperature range of martensite formation. Trans AIME. 1946;167:467–501.
  • Lee T-H, Oh C-S, Kim S-J. Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe-18Cr-10Mn-N steels. Scr Mater. 2008;58:110–113.
  • Angel T. Formation of martensite in austenitic stainless steels-effects of deformation, temperature, and composition. J Iron Steel Inst. 1954;177:165.
  • Lee Y-K, Choi C. Driving force for γ→ϵ martensitic transformation and stacking fault energy of γ in Fe-Mn binary system. Metall Mater Trans A. 2000;31:355–360.
  • Cabanas N, Penning J, Akdut N, et al. High-temperature deformation properties of austenitic Fe-Mn alloys. Metall Mater Trans A. 2006;37:3305–3315.
  • De Cooman BC. High Mn TWIP steel and medium Mn steel. In: Radhakanta Rana and Shiv Brat Singh, editors. Automotive steels. Woodhead Publishing; 2017. p. 317–385.
  • Han J, da Silva AK, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater. 2017;122:199–206.
  • Kwiatkowski da Silva A, Kamachali RD, Ponge D, et al. Thermodynamics of grain boundary segregation, interfacial spinodal and their relevance for nucleation during solid-solid phase transitions. Acta Mater. 2019;168:109–120.
  • Sun WW, Wu YX, Yang SC, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite. Scr Mater. 2018;146:60–63.
  • Latypov MI, Shin S, De Cooman BC, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel. Acta Mater. 2016;108:219–228.
  • Lee T-H, Ha H-Y, Hwang B, et al. Effect of carbon fraction on stacking fault energy of austenitic stainless steels. Metall Mater Trans A. 2012;43:4455–4459.
  • Brofman P, Ansell G. On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall Mater Trans A. 1978;9:879–880.
  • Lee T-H, Shin E, Oh C-S, et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater. 2010;58:3173–3186.
  • Gibbs P, De Moor E, Merwin M, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A. 2011;42:3691–3702.
  • Wang X, Wang L, Huang M. Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater. 2017;124:17–29.
  • Sun B, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scr Mater. 2017;133:9–13.
  • Sun B, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: role of the austenite-ferrite interface. Acta Mater. 2019;178:10–25.
  • Elkot MN, Sun B, Zhou X, et al. Hydrogen-assisted decohesion associated with nanosized grain boundary κ-carbides in a high-Mn lightweight steel. Acta Mater. 2022;241:118392.
  • Oh B, Cho S, Kim Y, et al. Effect of aluminium on deformation mode and mechanical properties of austenitic Fe-Mn-Cr-Al-C alloys. Mater Sci Eng A. 1995;197:147–156.
  • Kim J, Lee S-J, De Cooman BC. Effect of Al on the stacking fault energy of Fe-18Mn-0.6 C twinning-induced plasticity. Scr Mater. 2011;65:363–366.
  • Lehnhoff G, Findley K, De Cooman B. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scr Mater. 2014;92:19–22.
  • Kang M, Woo W, Lee Y-K, et al. Neutron diffraction analysis of stacking fault energy in Fe–18Mn–2Al–0.6 C twinning-induced plasticity steels. Mater Lett. 2012;76:93–95.
  • Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A. 2009;40:3076–3090.
  • Ryu JH, Kim SK, Lee CS, et al. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe-Mn-C steel. Proc R. Soc A Math, Phys Eng Sci. 2013;469:20120458.
  • Koyama M, Akiyama E, Lee Y-K, et al. Overview of hydrogen embrittlement in high-Mn steels. Int J Hydrogen Energy. 2017;42:12706–12723.
  • Song EJ, Bhadeshia H, Suh D-W. Interaction of aluminium with hydrogen in twinning-induced plasticity steel. Scr Mater. 2014;87:9–12.
  • Han D, Lee S, Noh S, et al. Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel. Scr Mater. 2015;99:45–48.
  • Park I-J, Jeong K-H, Jung J-G, et al. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6 C twinning-induced plasticity steels. Int J Hydrogen Energy. 2012;37:9925–9932.
  • Shun T, Wan C, Byrne J. A study of work hardening in austenitic Fe-Mn-C and Fe-Mn-Al-C alloys. Acta Metall Mater. 1992;40:3407–3412.
  • De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.
  • Dumay A, Chateau JP, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Mater Sci Eng A. 2008;483–484:184–187.
  • Miyazaki T, Kozakai T, Tsuzuki T. Phase decompositions of Fe-Si-Al ordered alloys. J Mater Sci. 1986;21:2557–2564.
  • Marker MC, Skolyszewska-Kuhberger B, Effenberger HS, et al. Phase equilibria and structural investigations in the system Al-Fe-Si. Intermetallics. 2011;19:1919–1929.
  • Lee S, Estrin Y, De Cooman BC. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel. Metall Mater Trans A. 2013;44:3136–3146.
  • He BB, Hu B, Yen HW, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science. 2017;357:1029–1032.
  • Cai M, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn trip steel with maximal ultimate strength and moderate ductility. Metall Mater Trans A. 2014;45:5624–5634.
  • Han Y, Shi J, Xu L, et al. Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel. Mater Des. 2012;34:427–434.
  • Bhadeshia HKDH. Prevention of hydrogen embrittlement in steels. ISIJ Int. 2016;56:24–36.
  • Park TM, Kim H-J, Um HY, et al. The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements. Mater Charact. 2020;165:110386.
  • Xu Z, Shen X, Allam T, et al. Austenite reversion and nano-precipitation during a compact two-step heat treatment of medium-Mn steel containing Cu and Ni. J Mater Res Technol. 2022;17:2601–2613.
  • Li S, Wen P, Li S, et al. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening. Acta Mater. 2021;205:116567.
  • Allam T, Guo X, Sevsek S, et al. Development of a Cr-Ni-VN medium manganese steel with balanced mechanical and corrosion properties. Metals (Basel). 2019;9:705.
  • De Moor E, Matlock DK, Speer JG, et al. Austenite stabilization through manganese enrichment. Scr Mater. 2011;64:185–188.
  • Van Bohemen S. Bainite and martensite start temperature calculated with exponential carbon dependence. Mater Sci Technol. 2012;28:487–495.
  • Dai ZB, Chen H, Ding R, et al. Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Mater Sci Eng R-Reports. 2021;143:100590.
  • Wycliffe PA, Purdy GR, Embury JD. Growth of austenite in the intercritical annealing of Fe-C-Mn dual phase steels. Can Metall Q. 1981;20:339–350.
  • Ågren J. Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels. Acta Metall. 1982;30:841–851.
  • Wei R, Enomoto M, Hadian R, et al. Growth of austenite from as-quenched martensite during intercritical annealing in an Fe-0.1 C-3Mn-1.5 Si alloy. Acta Mater. 2013;61:697–707.
  • Huyan F, Yan J-Y, Höglund L, et al. Simulation of the growth of austenite from as-quenched martensite in medium Mn steels. Metall Mater Trans A. 2018;49:1053–1060.
  • Wu YX, Sun WW, Gao X, et al. The effect of alloying elements on cementite coarsening during martensite tempering. Acta Mater. 2020;183:418–437.
  • Miyamoto G, Usuki H, Li Z-D, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073 K from spheroidized cementite structure in Fe-0.6 mass% C alloy. Acta Mater. 2010;58:4492–4502.
  • Wu YX, Sun WW, Styles MJ, et al. Cementite coarsening during the tempering of Fe-C-Mn martensite. Acta Mater. 2018;159:209–224.
  • Wu YX, Wang LY, Sun WW, et al. Austenite formation kinetics from multicomponent cementite-ferrite aggregates. Acta Mater. 2020;196:470–487.
  • Mueller JJ, Hu X, Sun X, et al. Austenite formation and cementite dissolution during intercritical annealing of a medium-manganese steel from a martensitic condition. Mater Des. 2021;203:109598.
  • Lai Q, Gouné M, Perlade A, et al. Mechanism of austenite formation from spheroidized microstructure in an intermediate Fe-0.1 C-3.5 Mn steel. Metall Mater Trans A. 2016;47:3375–3386.
  • Nehrenberg A. The growth of austenite as related to prior structure. JOM. 1950;2:162–174.
  • Kimmins S, Gooch D. Austenite memory effect in 1Cr-1Mo-0.75V (Ti, B) steel. Metal Science. 1983;17:519–532.
  • Zhang X, Miyamoto G, Toji Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy. Acta Mater. 2018;144:601–612.
  • Dmitrieva O, Ponge D, Inden G, et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater. 2011;59:364–374.
  • Zhang X, Miyamoto G, Kaneshita T, et al. Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: a transition in kinetics and morphology. Acta Mater. 2018;154:1–13.
  • Huang J, Poole W, Militzer M. Austenite formation during intercritical annealing. Metall Mater Trans A. 2004;35:3363–3375.
  • Zheng C, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model. Acta Mater. 2013;61:5504–5517.
  • Kulakov M, Poole W, Militzer M. The effect of the initial microstructure on recrystallization and austenite formation in a DP600 steel. Metall Mater Trans A. 2013;44:3564–3576.
  • Ollat M, Massardier V, Fabregue D, et al. Modeling of the recrystallization and austenite formation overlapping in cold-rolled dual-phase steels during intercritical treatments. Metall Mater Trans A. 2017;48:4486–4499.
  • Garcia CI, Deardo AJ. Formation of austenite in 1.5 pct Mn steels. Metall Trans A. 1981;12:521–530.
  • Kozeschnik E. A Scheil-Gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys. Metall Mater Trans A. 2000;31:1682–1684.
  • Inden G. Ordering and segregation reactions in b.c.c. binary alloys. Acta Metall. 1974;22:945–951.
  • Büth J, Inden G. Ordering and segregation reactions in f.c.c. binary alloys. Acta Metall. 1982;30:213–224.
  • Gault B, Breen AJ, Chang Y, et al. Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations. J Mater Res. 2018;23:4018–4030.
  • Kwiatkowski da Silva A, Inden G, Kumar A, et al. Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography. Acta Mater. 2018;147:165–175.
  • Kwiatkowski da Silva A, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater. 2017;124:305–315.
  • Kwiatkowski da Silva A, Souza Filho IR, Lu W, et al. A sustainable ultra-high strength Fe18Mn3Ti maraging steel through controlled solute segregation and α-Mn nanoprecipitation. Nat Commun. 2022;13:2330.
  • Guttmann M. Equilibrium segregation in a ternary solution-model for temper embrittlement. Surf Sci. 1975;53:213–227.
  • Guttmann M. Grain-boundary segregation, two dimensional compound formation, and precipitation. Metall Trans A. 1977;8:1383–1401.
  • Lejček P. Models of equilibrium grain boundary segregation. In: Pavel Lejcek, editor. Grain boundary segregation in metals. Berlin: Springer; 2010. p. 51–102.
  • Darvishi Kamachali R, Kwiatkowski da Silva A, McEniry E, et al. Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries. NPJ Comput Mater. 2020;6:191.
  • Souza Filho IR, Kwiatkowski da Silva A, Sandim MJR, et al. Martensite to austenite reversion in a high-Mn steel: partitioning-dependent two-stage kinetics revealed by atom probe tomography, in-situ magnetic measurements and simulation. Acta Mater. 2019;166:178–191.
  • Peng Z, Lu Y, Hatzoglou C, et al. An automated computational approach for complete in-plane compositional interface analysis by atom probe tomography. Microsc Microanal. 2019;25:389–400.
  • Benzing JT, Kwiatkowski da Silva A, Morsdorf L, et al. Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel. Acta Mater. 2019;166:512–530.
  • Lee H, Jo MC, Sohn SS, et al. Novel medium-Mn (austenite+martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism. Acta Mater. 2018;147:247–260.
  • Liu G, Li T, Yang Z, et al. On the role of chemical heterogeneity in phase transformations and mechanical behavior of flash annealed quenching & partitioning steels. Acta Mater. 2020;201:266–277.
  • Sun B, Ding R, Brodusch N, et al. Improving the ductility of ultrahigh-strength medium Mn steels via introducing pre-existed austenite acting as a “reservoir” for Mn atoms. Mater Sci Eng A. 2019;749:235–240.
  • Liu G, Dai Z, Yang Z, et al. Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: role of heating rate. J Mater Sci Technol. 2020;49:70–80.
  • Kim JH, Gu G, Koo M, et al. Enhanced ductility of as-quenched martensite by highly stable nano-sized austenite. Scr Mater. 2021;201:113955.
  • Kim JH, Kwon M-H, Gu G, et al. Quenching and partitioning (Q&P) processed medium Mn steel starting from heterogeneous microstructure. Materialia. 2020;12:100757.
  • Kim JH, Gu G, Kwon M-H, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite. Acta Mater. 2022;223:117506.
  • Wang M, Jiang M, Tasan CC. Manganese micro-segregation governed austenite re-reversion and its mechanical effects. Scr Mater. 2020;179:75–79.
  • Jeong MS, Park TM, Choi S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure. Scr Mater. 2021;190:16–21.
  • Enomoto M, Li S, Yang Z, et al. Partition and non-partition transition of austenite growth from a ferrite and cementite mixture in hypo-and hypereutectoid Fe-C-Mn alloys. Calphad. 2018;61:116–125.
  • Wan X, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium Mn steels. Scr Mater. 2019;166:68–72.
  • Liu J, Chen C, Feng Q, et al. Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: an in-situ TEM study. Mater Sci Eng A. 2017;703:236–243.
  • Bouaziz O, Estrin Y, Brechet Y, et al. Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials. Scr Mater. 2010;63:477–479.
  • Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel. Mater Sci Eng A. 2010;527:3552–3560.
  • Park K-T, Shin DH. Microstructural interpretation of negligible strain-hardening behavior of submicrometer-grained low-carbon steel during tensile deformation. Metall Mater Trans A. 2002;33:705–707.
  • Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr Mater. 2008;59:963–966.
  • Tamura I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met Sci. 1982;16:245–253.
  • Palumbo M. Thermodynamics of martensitic transformations in the framework of the CALPHAD approach. Calphad. 2008;32:693–708.
  • Olson G, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Met. 1972;28:107–118.
  • Bogers AJ, Burgers WG. Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice. Acta Metall. 1964;12:255–261.
  • Olson G, Cohen M. A general mechanism of martensitic nucleation: Part II. FCC→ BCC and other martensitic transformations. Metall Trans A. 1976;7:1905–1914.
  • Yang X-S, Sun S, Zhang T-Y. The mechanism of bcc α′ nucleation in single hcp ϵ laths in the fcc γ →hcp ϵ →bcc α′ martensitic phase transformation. Acta Mater. 2015;95:264–273.
  • Fujita H, Katayama T. In-situ observation of strain-induced γ→ϵ→α′ and γ→α′ martensitic transformations in Fe-Cr-Ni alloys. Mater Trans JIM. 1992;33:243–252.
  • Yang XS, Sun S, Wu XL, et al. Dissecting the mechanism of martensitic transformation via atomic-scale observations. Sci Rep. 2014;4:6141.
  • Bracke L, Kestens L, Penning J. Transformation mechanism of a'-martensite in an austenitic Fe-Mn-C-N alloy. Scr Mater. 2007;57:385–388.
  • Van Tol R, Kim J, Zhao L, et al. α′-Martensite formation in deep-drawn Mn-based TWIP steel. J Mater Sci. 2012;47:4845–4850.
  • Lee S, Woo W, De Cooman BC. Analysis of the tensile behavior of 12 pct Mn multi-phase (α + γ) TWIP + TRIP steel by neutron diffraction. Metall Mater Trans A. 2016;47:2125–2140.
  • Nimaga O, He B, Cheng G, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression. Int J Plast. 2019;123:165–177.
  • Yen H-W, Ooi SW, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. Acta Mater. 2015;82:100–114.
  • Field D, Garza-Martinez L, Van Aken D. Processing and properties of medium-Mn TRIP steel to obtain a two-stage TRIP behavior. Metall Mater Trans A. 2020;51:4427–4433.
  • De Cooman BC, Gibbs P, Lee S, et al. Transmission electron microscopy analysis of yielding in ultrafine-grained medium Mn transformation-induced plasticity steel. Metall Mater Trans A. 2013;44:2563–2572.
  • Gibbs PJ, De Cooman B, Brown DW, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel. Mater Sci Eng A. 2014;609:323–333.
  • He B. On the factors governing austenite stability: intrinsic versus extrinsic. Materials (Basel). 2020;13:3440.
  • Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795:140023.
  • Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.% Mn-0.6wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 2011;59:6449–6462.
  • Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening. Mater Sci Eng A. 2001;319:246–249.
  • Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr Mater. 2008;58:484–487.
  • Bouaziz O, Allain S, Scott C, et al. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci. 2011;15:141–168.
  • Sohn SS, Choi K, Kwak J-H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater. 2014;78:181–189.
  • Lee C-Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater. 2015;84:1–8.
  • Kwok T, Rahman K, Xu X, et al. Design of a high strength, high ductility 12 wt% Mn medium manganese steel with hierarchical deformation behaviour. Mater Sci Eng A. 2020;782:139258.
  • Park TM, Jeong MS, Jung C, et al. Improved strength of a medium-Mn steel by V addition without sacrificing ductility. Mater Sci Eng A. 2021;802:140681.
  • Tian Y, Bai Y, Zhao L, et al. A novel ultrafine-grained Fe22Mn0.6C TWIP steel with superior strength and ductility. Mater Charact. 2017;126:74–80.
  • Gutierrez-Urrutia I, Raabe D. Grain size effect on strain hardening in twinning-induced plasticity steels. Scr Mater. 2012;66:992–996.
  • Rahman K, Vorontsov V, Dye D. The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 2015;89:247–257.
  • McCormigk P. A model for the Portevin-Le chatelier effect in substitutional alloys. Acta Metall. 1972;20:351–354.
  • Nam J-H, Oh S-K, Park M-h, et al. The mechanism of dynamic strain aging for type A serrations in tensile curves of a medium-Mn steel. Acta Mater. 2021;206:116613.
  • Field DM, Van Aken DC. Dynamic strain aging phenomena and tensile response of medium-Mn TRIP steel. Metall Mater Trans A. 2018;49:1152–1166.
  • Yang F, Luo H, Pu E, et al. On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity. Int J Plast. 2018;103:188–202.
  • Rose K, Gloverj S. A study of strain-ageing in austenite. Acta Metall. 1966;14:1505–1516.
  • Lee S-J, Kim J, Kane SN, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater. 2011;59:6809–6819.
  • Oh S-K, Kilic ME, Seol J-B, et al. The mechanism of dynamic strain aging for type A serrations in tensile flow curves of Fe-18Mn-0.55 C (wt. %) twinning-induced plasticity steel. Acta Materialia. 2020;188:366–375.
  • Mola J, Luan G, Huang Q, et al. Dynamic strain aging mechanisms in a metastable austenitic stainless steel. Acta Mater. 2021;212:116888.
  • Tasan CC, Diehl M, Yan D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431.
  • Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des. 2012;41:370–379.
  • Ashby M. Work hardening of dispersion-hardened crystals. Philos Mag. 1966;14:1157–1178.
  • Jiang Z, Guan Z, Lian J. Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater Sci Eng A. 1995;190:55–64.
  • Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738–2746.
  • He B, Huang M. Strong and ductile medium Mn steel without transformation-induced plasticity effect. Mater Res Lett. 2018;6:365–371.
  • Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59:658–670.
  • Raabe D, Sun B, Da Silva AK, et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metall Mater Trans A. 2020;51:5517–5586.
  • Dutta A, Ponge D, Sandlöbes S, et al. Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia. 2019;5:100252.
  • Cong ZH, Jia N, Sun X, et al. Stress and strain partitioning of ferrite and martensite during deformation. Metall Mater Trans A. 2009;40:1383–1387.
  • Sun B, Fazeli F, Scott C, et al. Critical role of strain partitioning and deformation twinning on cracking phenomenon occurring during cold rolling of two duplex medium manganese steels. Scr Mater. 2017;130:49–53.
  • Varanasi RS, Zaefferer S, Sun B, et al. Localized deformation inside the Lüders front of a medium manganese steel. Mater Sci Eng A. 2021;824:141816.
  • Koyama M, Yamashita T, Morooka S, et al. Microstructure and plasticity evolution during Lüders deformation in an Fe-5Mn-0.1C medium-Mn steel. ISIJ Int. 2022;62:2036–2042.
  • He BB, Liang ZY, Huang MX. Nanoindentation investigation on the initiation of yield point phenomenon in a medium Mn steel. Scr Mater. 2018;150:134–138.
  • Wang XG, Liu CH, He BB, et al. Microscopic strain partitioning in Lüders band of an ultrafine-grained medium Mn steel. Mater Sci Eng A. 2019;761:138050.
  • Li Z, Ding H, Misra RDK, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A. 2017;679:230–239.
  • Zhang M, Li R, Ding J, et al. In situ high-energy X-ray diffraction mapping of Lüders band propagation in medium-Mn transformation-induced plasticity steels. Mater Res Lett. 2018;6:662–667.
  • Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater Des. 2015;83:42–48.
  • Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater. 2017;139:39–50.
  • Cottrell AH, Bilby BA. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc London Sect A. 1949;62:49.
  • Johnston WG, Gilman JJ. Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals. J Appl Phys. 1959;30:129–144.
  • Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr Mater. 2002;47:893–899.
  • Capolungo L, Spearot D, Cherkaoui M, et al. Dislocation nucleation from bicrystal interfaces and grain boundary ledges: relationship to nanocrystalline deformation. J Mech Phys Solids. 2007;55:2300–2327.
  • Blanter MS, Golovin IS, De Batist R, et al. Effect of plastic deformation on the carbon internal friction peak in austenitic steels. Phys Status Solidi (a). 2000;178:621–632.
  • Li YZ, Luo ZC, Liang ZY, et al. Effect of carbon on strain-rate and temperature sensitivity of twinning-induced plasticity steels: modeling and experiments. Acta Mater. 2019;165:278–293.
  • Schneider R, Steineder K, Krizan D, et al. Effect of the heat treatment on the microstructure and mechanical properties of medium-Mn-steels. Mater Sci Technol. 2019;35:2045–2053.
  • Lee S, Lee S-J, Santhosh Kumar S, et al. Localized deformation in multiphase, ultra-fine-grained 6 pct Mn transformation-induced plasticity steel. Metall Mater Trans A. 2011;42:3638–3651.
  • Steineder K, Krizan D, Schneider R, et al. On the damage behavior of a 0.1C6Mn medium-Mn steel. Steel Res Int. 2018;89:1700378.
  • Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel. Mater Sci Eng A. 2017;687:200–210.
  • Wang M-M, Tasan CC, Ponge D, et al. Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater. 2015;85:216–228.
  • Wang M, Tasan CC, Koyama M, et al. Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite. Metall Mater Trans A. 2015;46:3797–3802.
  • Sun B, Krieger W, Rohwerder M, et al. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels. Acta Mater. 2020;183:313–328.
  • Kim MT, Park TM, Baik K-H, et al. Crucial microstructural feature to determine the impact toughness of intercritically annealed medium-Mn steel with triplex-phase microstructure. Acta Mater. 2019;164:122–134.
  • Tonizzo Q, Gourgues-Lorenzon A-F, Mazière M, et al. Microstructure, plastic flow and fracture behavior of ferrite-austenite duplex low density medium Mn steel. Mater Sci Eng A. 2017;706:217–226.
  • Sun B, Aydin H, Fazeli F, et al. Microstructure evolution of a medium manganese steel during thermomechanical processing. Metall Mater Trans A. 2016;47:1782–1791.
  • Sohn SS, Lee B-J, Kwak J-H, et al. Effects of annealing treatment prior to cold rolling on the edge cracking phenomenon of ferritic lightweight steel. Metall Mater Trans A. 2014;45:3844–3856.
  • Han J, Nam J-H, Lee Y-K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater. 2016;113:1–10.
  • Fielding L, Song EJ, Han D-K, et al. Hydrogen diffusion and the percolation of austenite in nanostructured bainitic steel. Proc R. Soc A Math Phys Eng Sci. 2014;470:20140108.
  • Dong X, Wang D, Thoudden-Sukumar P, et al. Hydrogen-associated decohesion and localized plasticity in a high-Mn and high-Al two-phase lightweight steel. Acta Mater. 2022;239:118296.
  • Moyer J, Ansell G. The volume expansion accompanying the martensite transformation in iron-carbon alloys. Metall Trans A. 1975;6:1785.
  • Hornbogen E. Martensitic transformation at a propagating crack. Acta Metall. 1978;26:147–152.
  • Evans AG, Cannon R. Toughening of brittle solids by martensitic transformations. Acta Metall. 1986;34:761–800.
  • Antolovich SD, Singh B. On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Mater Trans B. 1971;2:2135–2141.
  • Wang X, Liu C, Sun B, et al. The dual role of martensitic transformation in fatigue crack growth. Proc Natl Acad Sci USA. 2022;119:e2110139119.
  • Krauss G. Martensite in steel: strength and structure. Mater Sci Eng A. 1999;273:40–57.
  • Raabe D, Li Z, Ponge D. Metastability alloy design. MRS Bull. 2019;44:266–272.
  • Sun B, Wang D, Lu X, et al. Current challenges and opportunities toward understanding Hydrogen Embrittlement mechanisms in advanced high-strength steels: a review. Acta Metall Sinica (English Lett). 2021;6:741–754.
  • Ryu JH, Chun YS, Lee CS, et al. Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel. Acta Mater. 2012;60:4085–4092.
  • Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall Mater Trans B. 2001;32:205–221.
  • Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci. 2014;18:253–261.
  • Seah M. Adsorption-induced interface decohesion. Acta Metall. 1980;28:955–962.
  • Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Mater. 2015;86:182–192.
  • Yu J, McMahon C. The effects of composition and carbide precipitation on temper embrittlement of 2.25 Cr-1 Mo steel: Part II. Effects of Mn and Si. Metall Trans A. 1980;11:291.
  • Guttmann M, Dumoulin P, Wayman M. The thermodynamics of interactive co-segregation of phosphorus and alloying elements in iron and temper-brittle steels. Metall Trans A. 1982;13:1693–1711.
  • Ito K, Sawada H, Ogata S. First-principles study on the grain boundary embrittlement of bcc-Fe by Mn segregation. Phys Rev Mater. 2019;3:013609.
  • Lai Q, Bouaziz O, Gouné M, et al. Damage and fracture of dual-phase steels: influence of martensite volume fraction. Mater Sci Eng A. 2015;646:322–331.
  • Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall Mater Trans A. 2012;43:37–46.
  • Gamsjäger E, Wiessner M, Schider S, et al. Analysis of the mobility of migrating austenite–ferrite interfaces. Philos Mag. 2015;95:2899–2917.
  • Zhang J, Huang M, Sun B, et al. Critical role of Lüders banding in hydrogen embrittlement susceptibility of medium Mn steels. Scr Mater. 2021;190:32–37.
  • Cao W, Zhang M, Huang C, et al. Ultrahigh Charpy impact toughness (∼450J) achieved in high strength ferrite/martensite laminated steels. Sci Rep. 2017;7:41459.
  • Kimura Y, Inoue T, Yin F, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science. 2008;320:1057–1060.
  • Jeong I, Ryu KM, Lee DG, et al. Austenite morphology and resistance to hydrogen embrittlement in medium Mn transformation-induced plasticity steel. Scr Mater. 2019;169:52–56.
  • Matlock DK, Speer JG. Third generation of AHSS: microstructure design concepts. In: Arunansu Haldar, Satyam Suwas, Debashish Bhattacharjee, editors. Microstructure and texture in steels. Springer; 2009. p. 185–205.
  • Liu S, Xiong Z, Guo H, et al. The significance of multi-step partitioning: processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels. Acta Mater. 2017;124:159–172.
  • He B, Liu L, Huang M. Room-temperature quenching and partitioning steel. Metall Mater Trans A. 2018;49:3167–3172.
  • Speer J. Phase transformations in quenched and partitioned steels. In: Elena Pereloma and David V. Edmonds, editors. Phase transformations in steels. Elsevier; 2012. p. 247–270.
  • Speer JG, De Moor E, Clarke AJ. Critical assessment 7: quenching and partitioning. Mater Sci Technol. 2015;31:3–9.
  • Dong H, Cao W, Liu Z, et al. The medium manganese steels: phenomena and industry potentials. Proceedings of HMnS2011 Conference, Seoul, Korea; 2011.
  • Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr Mater. 2010;63:815–818.
  • Zhang Y, Wang L, Findley KO, et al. Influence of temperature and grain size on austenite stability in medium manganese steels. Metall Mater Trans A. 2017;48:2140–2149.
  • Han Q, Zhang Y, Wang L. Effect of annealing time on microstructural evolution and deformation characteristics in 10Mn1.5Al TRIP steel. Metall Mater Trans A. 2015;46:1917–1926.
  • Jun HJ, Yakubovsky O, Fonstein N. On stability of retained austenite in medium Mn TRIP steels, Proceedings of HMnS2011 Conference, Seoul, Korea; 2011.
  • Shao C, Hui W, Zhang Y, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater Sci Eng A. 2017;682:45–53.
  • Lee S, Lee K, De Cooman BC. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-Added 6 Wt Pct medium Mn steel. Metall Mater Trans A. 2015;46:2356–2363.
  • Wang C, Cao W, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng A. 2013;562:89–95.
  • Cho L, Seo EJ, De Cooman BC. Near-Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel. Scr Mater. 2016;123:69–72.
  • Zhao Z, Liang J, Zhao A, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system. J Alloys Compd. 2017;691:51–59.
  • Tsuchiyama T, Inoue T, Tobata J, et al. Microstructure and mechanical properties of a medium manganese steel treated with interrupted quenching and intercritical annealing. Scr Mater. 2016;122:36–39.
  • Heo Y-U, Kim DH, Heo NH, et al. Deformation behavior in medium Mn steel of nanometer-sized α′+ γ lamellar structure. Metall Mater Trans A. 2016;47:6004–6016.
  • Cooman BC, Lee SJ, Shin S, et al. Combined intercritical annealing and Q&P processing of medium Mn steel. Metall Mater Trans A. 2016;1:39–45.
  • Hu B, He B, Cheng G, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Mater. 2019;174:131–141.
  • He B, Luo H, Huang M. Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects. Int J Plast. 2016;78:173–186.
  • Aranas Jr C, Wang T, Jonas JJ. Effect of interpass time on the dynamic transformation of a plain C–Mn and a Nb microalloyed steel. ISIJ Int. 2015;55:647–654.
  • Song H, Sohn SS, Kwak J-H, et al. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels. Metall Mater Trans A. 2016;47:2674–2685.
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31.
  • Lee S, Woo W, De Cooman BC. Analysis of the plasticity-enhancing mechanisms in 12 pct Mn austeno-ferritic steel by in Situ neutron diffraction. Metall Mater Trans A. 2014;45:5823–5828.
  • Han J, Lee Y-K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater. 2014;67:354–361.
  • Chin K-G, Kang C-Y, Shin SY, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater Sci Eng A. 2011;528:2922–2928.
  • Curtze S, Kuokkala V-T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58:5129–5141.
  • Kang S, Jung Y-S, Jun J-H, et al. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6 C-1.5 Al TWIP steel. Mater Sci Eng A. 2010;527:745–751.
  • Kwon O. Development of high performance high manganese TWIP steels in POSCO. Proceedings of HMnS2011 Conference, Seoul, Korea; 2011.
  • Opbroek E. Advanced high strength steel (AHSS) application guidelines: version 4.1. Brussels: World Steel Association; 2009.
  • Otto DJM, Schmidt-Juergensen R, Springub B, et al. HSD® - steels - optimized twip steels. Proceedings of HMnS2011 Conference, Seoul, Korea; 2011.
  • Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-AI steels. Mater Sci Technol. 1998;14:1213–1217.
  • Weng Y, Dong H, Gan Y. Advanced steels: the recent scenario in steel science and technology. Springer; 2011.
  • Cho K, Redkin K, Hua M, et al. Recent development of Nb-containing DP590, DP780 and DP980 steels for production on continuous galvanizing lines. In: Yuqing Weng, Han Dong, Yong Gan, editors. Advanced steels. Springer; 2011. p. 177–185.
  • Song H, Lee SG, Sohn SS, et al. Effect of strain-induced age hardening on yield strength improvement in ferrite-austenite duplex lightweight steels. Metall Mater Trans A. 2016;47:5372–5382.
  • Hu XH, Sun X, Hector LG, et al. Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach. Acta Mater. 2017;132:230–244.
  • Otto M. Fe-Mn-Al-Si-steels, lightweight potential for cars, trucks and trains. Young. 2017;80:30.
  • Choi JK, Lee S-G, Park Y-H, et al. High manganese austenitic steel for cryogenic applications, Proceedings of the Twenty-Second International Offshore and Polar Engineering Conference; 2012, OnePetro.
  • Steineder K, Krizan D, Schickinger M, et al. Wärmebehandlungsoptionen von medium-Mn-Stählen für den (Automobil-)Leichtbau. BHM Berg- Huettenmaenn Monatsh. 2019;164:379–384.
  • Bhadhon KM, Wang X, McNally EA, et al. Effect of intercritical annealing parameters and starting microstructure on the microstructural evolution and mechanical properties of a medium-Mn third generation advanced high strength steel. Metals. 2022;12:356.
  • Cai Z, Zhang D, Ma L, et al. Competing deformation mechanisms in an austenite-ferrite medium-Mn steel at different strain rates. Mater Sci Eng A. 2021;818:141357.
  • Benzing JT, Luecke WE, Mates S, et al. Intercritical annealing to achieve a positive strain-rate sensitivity of mechanical properties and suppression of macroscopic plastic instabilities in multi-phase medium-Mn steels. Mater Sci Eng A. 2021;803:140469.
  • Sarmast-Ghahfarokhi S, Zhang S, Midawi AR, et al. The failure mechanism of resistance spot welded third-generation medium-Mn steel during shear-tension loading. J Manuf Process. 2022;79:520–531.
  • Lun N, Saha D, Macwan A, et al. Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel. Mater Des. 2017;131:450–459.
  • DiGiovanni C, Kalashami AG, Goodwin F, et al. Occurrence of sub-critical heat affected zone liquid metal embrittlement in joining of advanced high strength steel. J Mater Process Technol. 2021;288:116917.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.