2,205
Views
3
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Silica aerogels: from materials research to industrial applications

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 862-900 | Received 03 Aug 2022, Accepted 07 Jan 2023, Published online: 20 Jan 2023

References

  • Karamikamkar S, Naguib HE, Park CB. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review. Adv Colloid Interface Sci. 2020;276:102101.
  • Ziegler C, Wolf A, Liu W, et al. Modern inorganic aerogels. Angew Chem, Int Ed. 2017;56(3):13200–13221.
  • Nardecchia S, Carriazo D, Ferrer ML, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev. 2013;42:794–830.
  • Jiang X, Du R, Hübner R, et al. A roadmap for 3D metal aerogels: materials design and application attempts. Matter. 2021;4:54–94.
  • Bag S, Arachchige IU, Kanatzidis MG. Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem. 2008;18:3628.
  • Aghajamali M, Iqbal M, Purkait TK, et al. Synthesis and properties of luminescent silicon nanocrystal/silica aerogel hybrid materials. Chem Mater. 2016;28(11):3877–3886.
  • Xie Y, Zhou B, Du A. Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv Compos Hybrid Mater. 2021;4:248–256.
  • Lei J, Liu Z. A novel constitutive model for the mechanical properties of silica aerogels. J Appl Phys. 2018;124:25102.
  • Li C, Chen Z, Dong W, et al. A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure. J Non-Cryst Solids. 2021;553:120517.
  • Smirnova I, Gurikov P. Aerogel production: current status, research directions, and future opportunities. J Supercrit Fluids. 2018;134:228–233.
  • Zhang Y, Wang J, Zhang X. Surfactant-free synthesis of silica aerogel microspheres with hierarchically porous structure. J Colloid Interface Sci. 2018;515:1–9.
  • Bhagat SD, Kim Y, Ahn Y, et al. Textural properties of ambient pressure dried water-glass based silica aerogel beads: one day synthesis. Microporous Mesoporous Mater. 2006;96(1–3):237–244.
  • Du Y, Zhang X, Wang J, et al. Reaction-spun transparent silica aerogel fibers. ACS Nano. 2020;14:11919–11928.
  • Weng J, Ouyang D, Yang X, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers Manage. 2019;200: 112071.
  • Huber L, Zhao S, Malfait WJ, et al. Fast and minimal-solvent production of superinsulating silica aerogel granulate. Angew Chem, Int Ed. 2017;56:4753–4756.
  • https://marketresearch.biz/infographics/aerogel-market/
  • Shen X. Research and industrialization of aerogel materials. The 5th Industry Innovation Conference of China Insulation & Energy Efficiency Materials Association; 2021, Changzhou, China.
  • Stojanovic A, Zhao S, Angelica E, et al. Three routes to superinsulating silica aerogel powder. J Sol-Gel Sci Technol. 2019;90:57–66.
  • Shimpi JR, Sidhaye DS, Prasad BLV. Digestive ripening: a fine chemical machining process on the nanoscale. Langmuir. 2017;33:9491–9507.
  • Jansson H, Bernin D, Ramser K. Silicate species of water glass and insights for alkali-activated green cement. AIP Adv. 2015;5:67167.
  • Joung YC, Roe MJ, Yoo YJ, et al. Method of preparing silica aerogel powder. US 8961919B2, 2015.
  • Belton DJ, Deschaume O, Perry CC. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J. 2012;279(10):1710–1720.
  • Lei C, Li J, Sun C, et al. Transparent, elastic and crack-free polymethylsilsesquioxane aerogels prepared by controllable shrinkage of the hydrogels in the aging process. Microporous Mesoporous Mater. 2018;267:107–114.
  • Maleki H, Durães L, García-González CA, et al. Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv Colloid Interface Sci. 2016;236:1–27.
  • Kanamori K, Aizawa M, Nakanishi K, et al. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater. 2007;19(12):1589–1593.
  • Shao Z, He X, Cheng X, et al. A simple facile preparation of methyltriethoxysilane based flexible silica aerogel monoliths. Mater Lett. 2017;204:93–96.
  • Zu G, Kanamori K, Wang X, et al. Superelastic triple-network polyorganosiloxane-based aerogels as transparent thermal superinsulators and efficient separators. Chem Mater. 2020;32(4):1595–1604.
  • Wu X, Zhong K, Ding J, et al. Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique. J Non-Cryst Solids. 2020;530:119826.
  • Ding J, Zhong K, Liu S, et al. Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique. Powder Technol. 2020;373:716–726.
  • Gao H, Bo L, Liu P, et al. Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials. Sol Energy Mater Sol Cells. 2019;201:110122.
  • Shimizu T, Kanamori K, Maeno A, et al. Transparent ethylene-bridged polymethylsiloxane aerogels and xerogels with improved bending flexibility. Langmuir. 2016;32(50):13427–13434.
  • Wang L, Zhao S, Yang M. Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater Chem Phys. 2009;113(1):485–490.
  • Venkateswara Rao A, Bhagat SD, Hirashima H, et al. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci. 2006;300:279–285.
  • Iswar S, Galmarini S, Bonanomi L, et al. Dense and strong, but superinsulating silica aerogel. Acta Mater. 2021;213:116959.
  • Iswar S, Malfait WJ, Balog S, et al. Effect of aging on silica aerogel properties. Microporous Mesoporous Mater. 2017;241:293–302.
  • Lamy-Mendes A, Silva RF, Dur Es L. Advances in carbon nanostructure-silica aerogel composites: a review. J Mater Chem A. 2018;6(4):134–1369.
  • Malfait WJ, Zhao S, Verel R, et al. Surface chemistry of hydrophobic silica aerogels. Chem Mater. 2015;27(19):6737–6745.
  • Hayase G, Kanamori K, Fukuchi M, et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem. 2013;125(7):2040–2043.
  • Lu X, He J, Xie J, et al. Preparation of hydrophobic hierarchical pore carbon – silica composite and its adsorption performance toward volatile organic compounds. J Environ Sci. 2020;87:39–48.
  • Zeng SQ, Hunt A, Greif R. Theoretical modeling of carbon content to minimize heat transfer in silica aerogel. J Non-Cryst Solids. 1995;186:271–277.
  • Li WL, Lu K, Walz JY. Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev. 2013;57(1):37–60.
  • García-González CA, Sosnik A, Kalmár J, et al. Aerogels in drug delivery: from design to application. J Controlled Release. 2021;332:40–63.
  • Şahin İ, Özbakır Y, İnönü Z, et al. Kinetics of supercritical drying of gels. Gels. 2018;4(1):3.
  • Sivaraman D, Zhao S, Iswar S, et al. Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging. Adv Eng Mater. 2021;23(10):2100376.
  • Li Z, Zhao S, Koebel MM, et al. Silica aerogels with tailored chemical functionality. Mater Des. 2020;193:108833.
  • Malfait WJ, Jurányi F, Zhao S, et al. Dynamics of silica aerogel’s hydrophobic groups: a quasielastic neutron scattering study. J Phys Chem C. 2017;121(37):20335–20344.
  • Roiban L, Foray G, Rong Q, et al. Advanced three dimensional characterization of silica-based ultraporous materials. RSC Adv. 2016;6(13):10625–10632.
  • Sanchez CM, Belleville P, Popalld M, et al. Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.
  • Bernard D, Buffière J, Pollock T, et al. 3D multiscale characterization of silica aerogels composites). The 2nd International Congress on 3D Materials Science; 2014; 29–34. L’Impérial Palace, Annecy, France.
  • Ebert HP. Thermal properties of aerogels. In: Aegerter M, Leventis N, Koebel M, editors. Aerogels handbook. Advances in sol-gel derived materials and technologies. New York, NY: Springer; 2011. p. 537–564.
  • Swimm K, Vidi S, Reichenauer G, et al. Impact of the backbone connectivity on the gas pressure-dependent thermal conductivity of porous solids. Int J Thermophys. 2022;43:8.
  • Sturm M, Holmgren J, König M, et al. The thermal conductivity of seasonal snow. J Glaciol. 1997;43(143):26–41.
  • Kadir AA, Mohajerani A, Roddick F, et al. Density, strength, thermal conductivity and leachate characteristics of light-weight fired clay bricks incorporating cigarette butts. World Acad Sci, Eng Technol. 2009;53:1035–1040.
  • Wong JCH, Kaymak H, Brunner S, et al. Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous Mesoporous Mater. 2014;183:23–29.
  • Wong JCH, Kaymak H, Tingaut P, et al. Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous Mesoporous Mater. 2015;217:150–158.
  • Borouni M, Niroumand B, Maleki A. A study on crystallization of amorphous nano silica particles by mechanical activation at the presence of pure aluminum. J Solid State Chem. 2018;263:208–215.
  • Wernery J, Brunner S, Weber B, et al. Superinsulation materials for energy-efficient train envelopes. Applied Sciences. 2021;11(7):2939.
  • Wang P, Körner W, Emmerling A, et al. Optical investigations of silica aerogels. J Non-Cryst Solids. 1992;145:141–145.
  • Hunt AJ. Light scattering for aerogel characterization. J Non-Cryst Solids. 1998;225:303–306.
  • Zhao L, Yang S, Bhatia B, et al. Modeling silica aerogel optical performance by determining its radiative properties. AIP Adv. 2016;6:25123.
  • Zhao L, Strobach E, Bhatia B, et al. Theoretical and experimental investigation of haze in transparent aerogels. Opt Express. 2019;27:A39.
  • Strobach E, Bhatia B, Yang S, et al. High temperature stability of transparent silica aerogels for solar thermal applications. APL Mater. 2019;7:81104.
  • Begum H, Horoshenkov KV, Conte M, et al. The acoustical properties of tetraethyl orthosilicate based granular silica aerogels. J Acoust Soc Am. 2021;149:4149–4158.
  • Mazrouei-Sebdani Z, Begum H, Schoenwald S, et al. A review on silica aerogel-based materials for acoustic applications. J Non-Cryst Solids. 2021;562:120770.
  • Caponi S, Fontana A, Montagna M, et al. Acoustic attenuation in silica porous systems. J Non-Cryst Solids. 2003;322(1-3):29–34.
  • Guo X, Shan J, Lai Z, et al. Facile synthesis of flexible methylsilsesquioxane aerogels with surface modifications for sound- absorbance, fast dye adsorption and oil/water separation. Molecules. 2018;23(4):945.
  • Zhao S, Malfait WJ, Demilecamps A, et al. Strong, thermally superinsulating biopolymer-silica aerogel hybrids by cogelation of silicic acid with pectin. Angew Chem, Int Ed. 2015;127(8):14490–14494.
  • Cai J, Liu S, Feng J, et al. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem, Int Ed. 2012;51(9):2076–2079.
  • Zu G, Kanamori K, Maeno A, et al. Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew Chem, Int Ed. 2018;57:9722–9727.
  • Takeshita S, Zhao S, Malfait WJ, et al. Chemistry of chitosan aerogels: three-dimensional pore control for tailored applications. Angew Chem, Int Ed. 2021;60(18):9828–9851.
  • Lin J, Li G, Liu W, et al. A review of recent progress on the silica aerogel monoliths: synthesis, reinforcement, and applications. J Mater Sci. 2021;56:10812–10833.
  • Liu R, Wang J, Du Y, et al. Phase-separation induced synthesis of superhydrophobic silica aerogel powders and granules. J Solid State Chem. 2019;279:120971.
  • Zhao S, Stojanovic A, Angelica E, et al. Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent-and ion-exchange. Chem Eng J. 2020;381:122421.
  • Berardi U, Mark Zaidi S. Characterization of commercial aerogel-enhanced blankets obtained with supercritical drying and of a new ambient pressure drying blanket. Energy Build. 2019;198:542–552.
  • Kiil S. Quantitative analysis of silica aerogel-based thermal insulation coatings. Prog Org Coat. 2015;89:26–34.
  • https://www.innovationintextiles.com/industry-talk/aerotherm-aerogel-insulation-brings-space-technology-to-everyday-life/
  • https://www2.lbl.gov/Science-Articles/Archive/sabl/2007/Jan/ALS-comet.html
  • Abolghasemi Mahani A, Motahari S, Mohebbi A. Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil. Mar Pollut Bull. 2018;129(2):438–447.
  • Qin L, He Y, Zhao X, et al. Preparation, characterization, and in vitro sustained release profile of resveratrol-loaded silica aerogel. Molecules. 2020;25(12):2752.
  • http://www.van-research.cn/intro/13.html
  • Zhang Y, Shen Q, Li X, et al. Facile preparation of a phenyl-reinforced flexible silica aerogel with excellent thermal stability and fire resistance. Mater Chem Front. 2021;5:4214–4224.
  • Sandford SA, Aléon J, Alexander CMO, et al. Organics captured from comet 81p/wild 2 by the stardust spacecraft. Science. 2006;314(5806):1720–1724.
  • Liu Q, Frazier AW, Zhao X, et al. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy. 2018;48:266–274.
  • Cao C, Ge M, Huang J, et al. Robust fluorine-free superhydrophobic pdms–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J Mater Chem A. 2016;4(31):12179–12187.
  • Matias T, Marques J, Quina MJ, et al. Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids Surf, A. 2015;480:260–269.
  • Zhang S, Chen C, Ahn W. Recent progress on CO2 capture using amine-functionalized silica. Curr Opin Green Sustain Chem. 2019;16:26–32.
  • Maleki H, Shahbazi M, Montes S, et al. Mechanically strong silica-silk fibroin bioaerogel: a hybrid scaffold with ordered honeycomb micromorphology and multiscale porosity for bone regeneration. ACS Appl Mater Interfaces. 2019;11(19):17256–17269.
  • Koebel MM, Huber L, Zhao S, et al. Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. J Sol-Gel Sci Technol. 2016;79(2):308–318.
  • Feng J, Xiao Y, Jiang Y, et al. Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate /polydimethylsiloxane. Ceram Int. 2015;41(4):5281–5286.
  • Yu Y, Peng K, Fang J, et al. Mechanical and thermal conductive properties of fiber-reinforced silica-alumina aerogels. Int J Appl Ceram Technol. 2018;15(5):1138–1145.
  • Wordsworth R, Kerber L, Cockell C. Enabling martian habitability with silica aerogel via the solid-state greenhouse effect. Nat Astron. 2019;3(10):898–903.
  • Hasan MA, Sangashetty R, Esther ACM, et al. Prospect of thermal insulation by silica aerogel: a brief review. J Instit Eng (India): D. 2017;98:297–304.
  • Jones SM. Aerogel: space exploration applications. J Sol-Gel Sci Technol. 2006;40:351–317.
  • Tian H, Zhang T, Jia Y, et al. Zhurong: features and mission of China’s first Mars rover. Innovation. 2021;2(3):100121.
  • Wernery J, Mancebo F, Malfait WJ, et al. The economics of thermal superinsulation in buildings. Energy Build. 2021;253:111506.
  • Heyer M, Berkefeld A, Voepel P, et al. Advanced opacified fiber-reinforced silica-based aerogel composites for superinsulation of exhaust tubing systems in semi-stationary motors. Materials (Basel). 2020;13(12):2677.
  • Liu S, Wu X, Li Y, et al. Hydrophobic in-situ SiO2-TiO2 composite aerogel for heavy oil thermal recovery: synthesis and high temperature performance. Appl Therm Eng. 2021;190:116745.
  • Lamy-Mendes A, Pontinha ADR, Alves P, et al. Progress in silica aerogel-containing materials for buildings’ thermal insulation. Constr Build Mater. 2021;286:122815.
  • Hanif A, Diao S, Lu Z, et al. Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres – mechanical and thermal insulating properties. Constr Build Mater. 2016;116:422–430.
  • Greszta A, Bartkowiak G, Dąbrowska A, et al. Multilayer nonwoven inserts with aerogel/pcms for the improvement of thermophysiological comfort in protective clothing against the cold. Materials (Basel). 2022;15(6):2307.
  • Ghazi Wakili K, Dworatzyk C, Sanner M, et al. Energy efficient retrofit of a prefabricated concrete panel building (plattenbau) in Berlin by applying an aerogel based rendering to its façades. Energy Build. 2018;165:293–300.
  • http://aerotherminsulation.com/products-applications/universal-components-footwear
  • Yu Z, Yang N, Apostolopoulou-Kalkavoura V, et al. Fire-retardant and thermally insulating phenolic-silica aerogels. Angew Chem, Int Ed. 2018;57(17):4538–4542.
  • Xie P, Jin L, Qiao G, et al. Thermal energy storage for electric vehicles at low temperatures: concepts, systems, devices and materials. Renewable Sustainable Energy Rev. 2022;160:112263.
  • Niu J, Deng S, Gao X, et al. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation. J Energy Storage. 2022;47:103557.
  • Li L, Xu C, Chang R, et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energ Storag Mater. 2021;40:329–336.
  • Yang X, Duan Y, Feng X, et al. An experimental study on preventing thermal runaway propagation in lithium-ion battery module using aerogel and liquid cooling plate together. Fire Technol. 2020;56:2579–2602.
  • He S, Ruan C, Shi Y, et al. Insight to hydrophobic SiO2 encapsulated SiO2 gel: preparation and application in fire extinguishing. J Hazard Mater. 2021;405:124216.
  • Begum H, Horoshenkov KV. Acoustical properties of fiberglass blankets impregnated with silica aerogel. Appl Sci. 2021;11(10):4593.
  • Günay AA, Kim H, Nagarajan N, et al. Optically transparent thermally insulating silica aerogels for solar thermal insulation. ACS Appl Mater Interfaces. 2017;10(15):12603–12611.
  • Shalygin AS, Katcin AA, Barnyakov AY, et al. Dependence of the refractive index of transparent ZrO2–SiO2 aerogels on the density and zirconium content. Ceram Int. 2021;47(7):9585–9590.
  • Adachi I, Sumiyoshi T, Hayashi K, et al. Study of a threshold Cherenkov counter based on silica aerogels with low refractive indices. Nucl Instrum Methods Phys Res. A. 1995;355(2-3):390–398.
  • Tabata M, Adachi I, Kawai H, et al. Recent progress in silica aerogel Cherenkov radiator. Phys Procedia. 2012;37:642–649.
  • Phalippou J, Dieudonné P, Faivre A, Woignier T. Aerogel sintering: From optical glasses to nuclear waste containment. In: Klein L, Aparicio M, Jitianu A, editors. Handbook of sol-gel science and technology. Cham: Springer; 2018. p. 1949–1969.
  • Tabata M, Adachi I, Kawai H, et al. Recent progress in silica aerogel Cherenkov radiator. Phys Procedia. 2012;37:642–649.
  • Adachi I. Status of high-quality silica aerogel radiators. Nucl Instrum Methods Phys Res Section A. 2020;952:161919.
  • Tabata M, Allison P, Beatty JJ, et al. Developing a silica aerogel radiator for the helix ring-imaging cherenkov system. Nucl Instrum Methods Phys Res Section A. 2020;952:161879.
  • Belloni E, Buratti C, Merli F, et al. Thermal-energy and lighting performance of aerogel glazings with hollow silica: field experimental study and dynamic simulations. Energy Build. 2021;243:110999.
  • Buratti C, Belloni E, Merli F, et al. Aerogel glazing systems for building applications: a review. Energy Build. 2021;231:110587.
  • Yashim MM, Sainorudin MH, Mohammad M, et al. Recent advances on lightweight aerogel as a porous receiver layer for solar thermal technology application. Sol Energy Mater Sol Cells. 2021;228:111131.
  • Dowson M, Pegg I, Harrison D, et al. Predicted and in situ performance of a solar air collector incorporating a translucent granular aerogel cover. Energy Build. 2012;49:173–187.
  • Hayase G, Kugimiya K, Ogawa M, et al. The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J Mater Chem A. 2014;2:6525–6531.
  • Mi H, Jing X, Huang H, et al. Superhydrophobic graphene/cellulose/silica aerogel with hierarchical structure as superabsorbers for high efficiency selective oil absorption and recovery. Ind Eng Chem Res. 2018;57(5):1745–1755.
  • Amonette JE, Matyáš J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Microporous Mesoporous Mater. 2017;250:100–119.
  • Drdova S, Zhao S, Giannakou M, et al. Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal. Adv Sci. 2022;2105819.
  • Maleki H, Hüsing N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: environmental protection aspects. Appl Catal, B. 2018;221:530–555.
  • Götz W, Tobiasch E, Witzleben S, et al. Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics. 2019;11(3):117.
  • Ashley CE, Carnes EC, Epler KE, et al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano. 2012;6(3):2174–2188.
  • Noman MT, Amor N, Ali A, et al. Aerogels for biomedical, energy and sensing applications. Gels. 2021;7(4):264.
  • Stergar J, Maver U. Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol. 2016;77(3):738–752.
  • Arcos D, Vallet-Regí M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6(8):2874–2888.
  • Sani S, Mohd Muhid MN, Hamdan H. Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (tesa) biosensor for phenol removal in aqueous solution. J Sol-Gel Sci Technol. 2011;59(1):7–18.
  • Pipattanawarothai A, Suksai C, Srisook K, et al. Non-cytotoxic hybrid bioscaffolds of chitosan-silica: sol-gel synthesis, characterization and proposed application. Carbohydr Polym. 2017;178:190–199.
  • Kéri M, Forgács A, Papp V, et al. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels–implications in drug delivery. Acta Biomater. 2020;105:131–145.
  • Lynch KJ, Skalli O, Sabri F. Investigation of surface topography and stiffness on adhesion and neurites extension of pc12 cells on crosslinked silica aerogel substrates. Plos One. 2017;12:e185978.
  • https://www.idtechex.com/en/research-report/aerogels-2021-2031-technologies-markets-and-players/801
  • Shen J, Zhang X. Recent progress and applications of aerogels in China. J Sol-Gel Sci Technol. 2021: 1–29. https://doi.org/10.1007/s10971-021-05639-2
  • Kistler SS. Coherent expanded aerogels. J Phys Chem. 1932;36(1):52–64.
  • Jones RG. Compendium of polymer terminology and nomenclature, IUPAC recommendations 2008. Chemistry International - Newsmagazine for IUPAC. 2009;31(4):32–33.
  • Hüsing N, Schubert U. Aerogels. In: Ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. p. 622–646.
  • Leventis N, Sadekar A, Chandrasekaran N, et al. Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3d silica networks. Chem Mater. 2010;22:2790–2803.
  • Vareda JP, Lamy-Mendes A, Durães L. A reconsideration on the definition of the term aerogel based on current drying trends. Microporous Mesoporous Mater. 2018;258:211–216.
  • https://www.alliedmarketresearch.com/expanded-polystyrene-eps-market
  • https://www.alliedmarketresearch.com/mineral-wool-market-A06104
  • Nocentini K, Achard P, Biwole P, et al. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Build. 2018;158:14–22.
  • Ibrahim M, Nocentini K, Stipetic M, et al. Multi-field and multi-scale characterization of novel super insulating panels/systems based on silica aerogels: thermal, hydric, mechanical, acoustic, and fire performance. Build Environ. 2019;151:30–42.
  • Li Z, Cheng X, Shi L, et al. Flammability and oxidation kinetics of hydrophobic silica aerogels. J Hazard Mater. 2016;320:350–358.
  • Kashiwagi T, Gilman JW, Butler KM, et al. Flame retardant mechanism of silica gel/silica. Fire Mater. 2000;24:277–289.
  • Figueira R, Fontinha I, Silva C, et al. Hybrid sol-gel coatings: smart and green materials for corrosion mitigation. Coatings. 2016;6:12.
  • Wang Q, Mao B, Stoliarov SI, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci. 2019;73:95–131.
  • Liu Z, Liu Y, He B, et al. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renewable Sustainable Energy Rev. 2019;101:329–345.
  • Albarelli JQ, Santos DT, Meireles MAA, et al. Techno-economic analysis of production of ammonia-borane confined in silica aerogel microparticles by subcritical CO2 drying. J Supercrit Fluids. 2018;138:147–153.
  • Dowson M, Grogan M, Birks T, et al. Streamlined life cycle assessment of transparent silica aerogel made by supercritical drying. Appl Energy. 2012;97:396–404.
  • Cuce E, Cuce PM, Wood CJ, et al. Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renewable Sustainable Energy Rev. 2014;34:273–299.
  • Garrido R, Silvestre JD, Flores-Colen I. Economic and energy life cycle assessment of aerogel-based thermal renders. J Cleaner Prod. 2017;151:537–545.
  • Yan Q, Feng Z, Luo J, et al. Preparation and characterization of building insulation material based on SiO2 aerogel and its composite with expanded perlite. Energy Build. 2022;255:111661.
  • Collins RA, Zhao S, Wang J, et al. The aerogel industry. Aerogels handbook. New York, NY: Springer-Verlag; 2023.
  • Wang J, Zhang Y, Wei Y, et al. Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Microporous Mesoporous Mater. 2015;218:192–198.
  • Kaya GG, Yilmaz E, Deveci H. Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: a comparison study. Adv Powder Technol. 2020;31:926–936.
  • Gao G, Liu D, Zou H, et al. Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol. 2010;197:283–287.
  • Feng Q, Chen K, Ma D, et al. Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloids Surf, A. 2018;539:399–406.
  • Pinto I, Silvestre JD, de Brito J, et al. Environmental impact of the subcritical production of silica aerogels. J Cleaner Prod. 2020;252:119696.
  • Garrido R, Silvestre JD, Flores-Colen I, et al. Economic assessment of the production of subcritically dried silica-based aerogels. J Non-Cryst Solids. 2019;516:26–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.