2,281
Views
5
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Multiphysics multi-scale computational framework for linking process–structure–property relationships in metal additive manufacturing: a critical review

, , , , &
Pages 943-1009 | Received 01 Feb 2022, Accepted 10 Jan 2023, Published online: 16 Feb 2023

References

  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23:1917–1928. doi:10.1007/S11665-014-0958-Z/FIGURES/9
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61:315–360. doi:10.1080/09506608.2015.1116649
  • Gisario A, Kazarian M, Martina F, et al. Metal additive manufacturing in the commercial aviation industry: a review. J Manuf Syst. 2019;53:124–149. doi:10.1016/J.JMSY.2019.08.005
  • Ho YH, Joshi SS, Wu TC, et al. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Mater Sci Eng C. 2020;109:110632. doi:10.1016/J.MSEC.2020.110632
  • Ho YH, Man K, Joshi SS, et al. In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioact Mater. 2020;5:891–901. doi:10.1016/J.BIOACTMAT.2020.06.009
  • Yang Y, Lu C, Peng S, et al. Laser additive manufacturing of Mg-based composite with improved degradation behaviour. Virtual Phys Prototyp. 2020;15:278–293. doi:10.1080/17452759.2020.1748381
  • Goh GL, Zhang H, Chong TH, et al. 3D printing of multilayered and multimaterial electronics: a review. Adv Electron Mater. 2021;7:2100445. doi:10.1002/AELM.202100445
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng. 2017;110:442–458. doi:10.1016/J.COMPOSITESB.2016.11.034
  • Lakhdar Y, Tuck C, Binner J, et al. Additive manufacturing of advanced ceramic materials. Prog Mater Sci. 2021;116:100736. doi:10.1016/J.PMATSCI.2020.100736
  • Zhang C, Chen F, Huang Z, et al. Additive manufacturing of functionally graded materials: a review. Mater Sci Eng A. 2019;764:138209. doi:10.1016/J.MSEA.2019.138209
  • Reichardt A, Shapiro AA, Otis R, et al. Advances in additive manufacturing of metal-based functionally graded materials. Int Mater Rev. 2020;66:1–29. doi:10.1080/09506608.2019.1709354
  • Lima DD, Mantri SA, Mikler CV, et al. Laser additive processing of a functionally graded internal fracture fixation plate. Mater Des. 2017;130:8–15. doi:10.1016/J.MATDES.2017.05.034
  • Nazir A, Abate KM, Kumar A, et al. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int J Adv Manuf Technol. 2019;104:3489–3510. doi:10.1007/S00170-019-04085-3
  • Nagesha BK, Dhinakaran V, Varsha Shree M, et al. Review on characterization and impacts of the lattice structure in additive manufacturing. Mater Today Proc. 2020;21:916–919. doi:10.1016/J.MATPR.2019.08.158
  • Mahmoud D, Elbestawi MA. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review. J Manuf Mater Process. 2017;1:13. doi:10.3390/JMMP1020013
  • Yu WH, Sing SL, Chua CK, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Prog Mater Sci. 2019;104:330–379. doi:10.1016/J.PMATSCI.2019.04.006
  • Galati M, Iuliano L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manuf. 2018;19:1–20. doi:10.1016/J.ADDMA.2017.11.001
  • Yu HZ, Mishra RS. Additive friction stir deposition: a deformation processing route to metal additive manufacturing. Mater Res Lett. 2021;9:71–83. doi:10.1080/21663831.2020.1847211
  • Bayat M, Mohanty S, Hattel JH. A systematic investigation of the effects of process parameters on heat and fluid flow and metallurgical conditions during laser-based powder bed fusion of Ti6Al4V alloy. Int J Heat Mass Transf. 2019;139:213–230. doi:10.1016/j.ijheatmasstransfer.2019.05.017
  • Park J, Lee SH. CMT-based wire arc additive manufacturing using 316L stainless steel (2): solidification Map of the multilayer deposit. Metals (Basel). 2021;11:1725. doi:10.3390/met11111725
  • Guo J, Zhou Y, Liu C, et al. Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency. Materials (Basel). 2016;9:823. doi:10.3390/MA9100823
  • Sukhotskiy V. Computational analysis of liquid metal drop-on-demand jetting and solidification using a contactless magnetohydrodynamic actuator. 2021.
  • Palanivel S, Sidhar H, Mishra RS. Friction stir additive manufacturing: route to high structural performance. JOM. 2015;67:616–621. doi:10.1007/S11837-014-1271-X/FIGURES/6
  • Palanivel S, Mishra RS. Building without melting: a short review of friction-based additive manufacturing techniques. Int J Addit Subtract Mater Manuf. 2017;1:82. doi:10.1504/IJASMM.2017.082991
  • Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Elsevier Enhanced Reader. n.d. https://reader.elsevier.com/reader/sd/pii/S0261306914007857?token=FBB16201113973307AF3245BF8D33DBCD27597D0764ADB8C82CDE57D4F0C20FB33AF0425ED4614C5670A1AB3C3BA8D1A&originRegion=us-east-1&originCreation=20211212052332 (accessed December 10, 2021).
  • Li D. A review of microstructure evolution during ultrasonic additive manufacturing. Int J Adv Manuf Technol. 2021;113:1–19. doi:10.1007/S00170-020-06439-8/FIGURES/18
  • Friel RJ, Harris RA. Ultrasonic additive manufacturing – a hybrid production process for novel functional products. Procedia CIRP. 2013;6:35–40. doi:10.1016/J.PROCIR.2013.03.004
  • Hehr A, Norfolk M. A comprehensive review of ultrasonic additive manufacturing. Rapid Prototyp J. 2020;26:445–458. doi:10.1108/RPJ-03-2019-0056/FULL/XML
  • Li J, Monaghan T, Nguyen TT, et al. Multifunctional metal matrix composites with embedded printed electrical materials fabricated by ultrasonic additive manufacturing. Compos B Eng. 2017;113:342–354. doi:10.1016/J.COMPOSITESB.2017.01.013
  • Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf. 2018;21:628–650. doi:10.1016/j.addma.2018.04.017
  • Mostafaei A, Elliott AM, Barnes JE, et al. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021;119:100707. doi:10.1016/J.PMATSCI.2020.100707
  • Ziaee M, Crane NB. Binder jetting: a review of process, materials, and methods. Addit Manuf. 2019;28:781–801. doi:10.1016/j.addma.2019.05.031
  • Gülcan O, Günaydın K, Tamer A. The state of the art of material jetting—a critical review. Polymers (Basel). 2021;13:2829. doi:10.3390/POLYM13162829
  • Gibson I, Rosen D, Stucker B, et al. Material jetting. In: Additive manufacturing technologies. Cham: Springer; 2021. p. 203–235. doi:10.1007/978-3-030-56127-7_7
  • Zhang Z, Huang Y, Rani Kasinathan A, et al. 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol. 2019;109:297–312. doi:10.1016/j.optlastec.2018.08.012
  • Mollamahmutoglu M, Yilmaz O. Volumetric heat source model for laser-based powder bed fusion process in additive manufacturing. Therm Sci Eng Prog. 2021;25:101021. doi:10.1016/j.tsep.2021.101021
  • Wei HL, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components. Prog Mater. Sci. 2021;116. doi:10.1016/j.pmatsci.2020.100703
  • Sih SS, Barlow JW. Measurement and prediction of the thermal conductivity of powders at high temperatures. Solid Freeform 400 Fabrication Symposium Proceedings. 1992, p. 321–329.
  • Cook PS, Murphy AB. Simulation of melt pool behaviour during additive manufacturing: underlying physics and progress. Addit Manuf. 2020;31:100909. doi:10.1016/j.addma.2019.100909
  • Mukherjee T, Wei HL, De A, et al. Heat and fluid flow in additive manufacturing—part I: modeling of powder bed fusion. Comput Mater Sci. 2018;150:304–313. doi:10.1016/j.commatsci.2018.04.022
  • Liu S, Zhu H, Peng G, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des. 2018;142:319–328. doi:10.1016/j.matdes.2018.01.022
  • Ladani L, Romano J, Brindley W, et al. Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder bed technology. Addit Manuf. 2017;14:13–23. doi:10.1016/j.addma.2016.12.004
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15:299–305. doi:10.1007/BF02667333
  • Zagade P, Gautham BP, De A, et al. Analytical estimation of fusion zone dimensions and cooling rates in part scale laser powder bed fusion. Addit Manuf. 2021;46:102222. doi:10.1016/j.addma.2021.102222
  • Foroozmehr A, Badrossamay M, Foroozmehr E, et al. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des. 2016;89:255–263. doi:10.1016/j.matdes.2015.10.002
  • Yin J, Zhu H, Ke L, et al. A finite element model of thermal evolution in laser micro sintering. Int J Adv Manuf Technol. 2016;83:1847–1859. doi:10.1007/s00170-015-7609-x
  • Li Y, Gu D. Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study. Addit Manuf. 2014;1-4:99–109. doi:10.1016/j.addma.2014.09.001
  • Zhang DQ, Cai QZ, Liu JH, et al. Select laser melting of W-Ni-Fe powders: simulation and experimental study. Int J Adv Manuf Technol. 2010;51:649–658. doi:10.1007/s00170-010-2641-3
  • Criales LE, Arısoy YM, Özel T. Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625. Int J Adv Manuf Technol. 2016;86:2653–2666. doi:10.1007/s00170-015-8329-y
  • Shi Q, Gu D, Xia M, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol. 2016;84:9–22. doi:10.1016/j.optlastec.2016.04.009
  • Antony K, Arivazhagan N, Senthilkumaran K. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J Manuf Process. 2014;16:345–355. doi:10.1016/j.jmapro.2014.04.001
  • Liu Y, Zhang J, Pang Z. Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel. Opt Laser Technol. 2018;98:23–32. doi:10.1016/j.optlastec.2017.07.034
  • Mazumder S, Pantawane MV, Ho Y-H, et al. Spatial response of laser powder bed additively manufactured Ti6Al4V to temperature variation of aqueous electrolyte. Appl Phys A Mater Sci Process. 2020;126; doi:10.1007/s00339-020-04082-4
  • Pantawane MV, Ho Y-H, Joshi SS, et al. Computational assessment of thermokinetics and associated microstructural evolution in laser powder bed fusion manufacturing of Ti6Al4V alloy. Sci Rep. 2020;10. doi:10.1038/s41598-020-63281-4
  • Ho YH, Mazumder S, Pantawane MV, et al. Effect of spatially varying thermokinetics on the electrochemical response of laser additively manufactured Ti6Al4V. Adv Eng Mater. 2022:2100938. doi:10.1002/ADEM.202100938
  • Joshi SS, Sharma S, Mazumder S, et al. Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: integrated experimental and computational approach. J Manuf Process. 2021;68:852–866. doi:10.1016/J.JMAPRO.2021.06.009
  • Yan Z, Liu W, Tang Z, et al. Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol. 2018;106:427–441. doi:10.1016/j.optlastec.2018.04.034
  • Sharma S, Ramakrishna SA, Ramkumar J. Numerical simulation of melt hydrodynamics in laser micro processing of metals. Procedia CIRP. 2020;95:944–949. doi:10.1016/j.procir.2020.01.186
  • Mayi YA, Dal M, Peyre P, et al. Erratum: transient dynamics and stability of keyhole at threshold in laser powder bed fusion regime investigated by finite element modeling. J Laser Appl. 2021;33:029902. doi:10.2351/7.0000371
  • Gan Z, Yu G, He X, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int J Heat Mass Transf. 2017;104:28–38. doi:10.1016/j.ijheatmasstransfer.2016.08.049
  • Queva A, Guillemot G, Moriconi C, et al. Numerical study of the impact of vaporisation on melt pool dynamics in laser powder bed fusion - application to IN718 and Ti–6Al–4V. Addit Manuf. 2020;35:101249. doi:10.1016/j.addma.2020.101249
  • Courtois M, Carin M, le Masson P, et al. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding. J Phys D Appl Phys. 2013;46:505305. doi:10.1088/0022-3727/46/50/505305
  • Tan JL, Tang C, Wong CH. A computational study on porosity evolution in parts produced by selective laser melting. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:3663–3673. doi:10.1007/s11661-018-4697-x
  • Liu FQ, Wei L, Shi SQ, et al. On the varieties of build features during multi-layer laser directed energy deposition. Addit Manuf. 2020;36:101491. doi:10.1016/j.addma.2020.101491
  • Khairallah SA, Anderson A. Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol. 2014;214:2627–2636. doi:10.1016/j.jmatprotec.2014.06.001
  • Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi:10.1016/j.actamat.2016.02.014
  • Zakirov A, Belousov S, Bogdanova M, et al. Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale. Addit Manuf. 2020;35:101236. doi:10.1016/j.addma.2020.101236
  • Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosity formation modelling in selective laser melting. Int J Heat Mass Transf. 2019;140:1091–1105. doi:10.1016/j.ijheatmasstransfer.2019.06.038
  • Gu D, Xia M, Dai D. On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting. Int J Mach Tools Manuf. 2019;137:67–78. doi:10.1016/j.ijmachtools.2018.10.006
  • Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979;29:47–65.
  • Steuben JC, Iliopoulos AP, Michopoulos JG. Discrete element modeling of particle-based additive manufacturing processes. Comput Methods Appl Mech Eng. 2016;305:537–561. doi:10.1016/j.cma.2016.02.023
  • Wang Z, Yan W, Liu WK, et al. Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput Mech. 2019;63:649–661. doi:10.1007/s00466-018-1614-5
  • Tian Y, Yang L, Zhao D, et al. Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel. J Manuf Process. 2020;58:964–974. doi:10.1016/j.jmapro.2020.09.002
  • Chen H, Wei Q, Wen S, et al. Flow behavior of powder particles in layering process of selective laser melting: numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf. 2017;123:146–159. doi:10.1016/j.ijmachtools.2017.08.004
  • Wang L, Yu A, Li E, et al. Effects of spreader geometry on powder spreading process in powder bed additive manufacturing. Powder Technol. 2021;384:211–222. doi:10.1016/j.powtec.2021.02.022
  • Gu H, Wei C, Li L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting. Int J Heat Mass Transf. 2020;151:119458. doi:10.1016/j.ijheatmasstransfer.2020.119458
  • Yao D, An X, Fu H, et al. Dynamic investigation on the powder spreading during selective laser melting additive manufacturing. Addit Manuf. 2021;37:101707. doi:10.1016/j.addma.2020.101707
  • Mindt HW, Megahed M, Lavery NP, et al. Powder bed layer characteristics: the overseen first-order process input. Metall Mater Trans A Phys Metall Mater Sci. 2016;47:3811–3822. doi:10.1007/s11661-016-3470-2
  • Körner C, Attar E, Heinl P. Mesoscopic simulation of selective beam melting processes. J Mater Process Technol. 2011;211:978–987. doi:10.1016/j.jmatprotec.2010.12.016
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol. 2014;214:2522–2528. doi:10.1016/j.jmatprotec.2014.05.002
  • Markl M, Ammer R, Rüde U, et al. Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. Int J Adv Manuf Technol. 2015;78:239–247. doi:10.1007/s00170-014-6594-9
  • Xia M, Gu D, Yu G, et al. Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int J Mach Tools Manuf. 2016;109:147–157. doi:10.1016/j.ijmachtools.2016.07.010
  • Panwisawas C, Qiu CL, Sovani Y, et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr Mater. 2015;105:14–17. doi:10.1016/j.scriptamat.2015.04.016
  • Panwisawas C, Qiu C, Anderson MJ, et al. Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci. 2017;126:479–490. doi:10.1016/j.commatsci.2016.10.011
  • Yan W, Qian Y, Ge W, et al. Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater Des. 2018;141:210–219. doi:10.1016/j.matdes.2017.12.031
  • Yan W, Ge W, Qian Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater. 2017;134:324–333. doi:10.1016/j.actamat.2017.05.061
  • Aggarwal A, Patel S, Kumar A. Selective laser melting of 316L stainless steel: physics of melting mode transition and its influence on microstructural and mechanical behavior. JOM. 2019;71:1105–1116. doi:10.1007/s11837-018-3271-8
  • Lee YS, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf. 2016;12:178–188. doi:10.1016/j.addma.2016.05.003
  • Leitz KH, Grohs C, Singer P, et al. Fundamental analysis of the influence of powder characteristics in selective laser melting of molybdenum based on a multi-physical simulation model. Int J Refract Metals Hard Mater. 2018;72:1–8. doi:10.1016/j.ijrmhm.2017.11.034
  • Liu S, Liu J, Chen J, et al. Influence of surface tension on the molten pool morphology in laser melting. Int J Therm Sci. 2019;146:106075. doi:10.1016/j.ijthermalsci.2019.106075
  • Chen Q, Guillemot G, Gandin CA, et al. Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material. Addit Manuf. 2018;21:713–723. doi:10.1016/j.addma.2018.03.003
  • Kumar A, Roy S. Effect of three-dimensional melt pool convection on process characteristics during laser cladding. Comput Mater Sci. 2009;46:495–506. doi:10.1016/j.commatsci.2009.04.002
  • Gan Z, Liu H, Li S, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron. Int J Heat Mass Transf. 2017;111:709–722. doi:10.1016/j.ijheatmasstransfer.2017.04.055
  • Gan Z, Yu G, He X, et al. Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing. Int Commun Heat Mass Transfer. 2017;86:206–214. doi:10.1016/j.icheatmasstransfer.2017.06.007
  • Ou W, Knapp GL, Mukherjee T, et al. An improved heat transfer and fluid flow model of wire-arc additive manufacturing. Int J Heat Mass Transf. 2021;167:120835. doi:10.1016/j.ijheatmasstransfer.2020.120835
  • Ou W, Wei Y, Liu R, et al. Determination of the control points for circle and triangle route in wire arc additive manufacturing (WAAM). J Manuf Process. 2020;53:84–98. doi:10.1016/j.jmapro.2020.02.003
  • Tang C, Tan JL, Wong CH. A numerical investigation on the physical mechanisms of single track defects in selective laser melting. Int J Heat Mass Transf. 2018;126:957–968. doi:10.1016/j.ijheatmasstransfer.2018.06.073
  • King WE, Barth HD, Castillo VM, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol. 2014;214:2915–2925. doi:10.1016/j.jmatprotec.2014.06.005
  • Gusarov AV, Smurov I. Two-dimensional numerical modelling of radiation transfer in powder beds at selective laser melting. Appl Surf. Sci. 2009;255:5595–5599. doi:10.1016/j.apsusc.2008.07.202
  • Gusarov AV, Yadroitsev I, Bertrand P, et al. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transfer. 2009;131:1–10. doi:10.1115/1.3109245
  • Otto A, Vázquez RG, Hartel U, et al. Numerical analysis of process dynamics in laser welding of Al and Cu. Procedia CIRP. 2018;74:691–695. doi:10.1016/j.procir.2018.08.040
  • Deng C, Kim J, Oh S, et al. Electrodynamic simulation of energy absorption in laser keyhole welding of zinc-coated and uncoated steel sheets. J Mater Process Technol. 2016;231:412–421. doi:10.1016/j.jmatprotec.2016.01.011
  • Zhang Z, Ge P, Li T, et al. Electromagnetic wave-based analysis of laser–particle interactions in directed energy deposition additive manufacturing. Addit Manuf. 2020;34:101284. doi:10.1016/j.addma.2020.101284
  • Khairallah SA, Martin AA, Lee JRI, et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science (1979). 2020;368:660–665. doi:10.1126/science.aay7830
  • Shrestha S, Kevin Chou Y. A numerical study on the keyhole formation during laser powder bed fusion process. J Manuf Sci Eng. 2019;141:1–9. doi:10.1115/1.4044100
  • Liu B, Fang G, Lei L, et al. A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM). Appl Math Model. 2020;79:506–520. doi:10.1016/j.apm.2019.10.049
  • Le KQ, Tang C, Wong CH. On the study of keyhole-mode melting in selective laser melting process. Int J Therm Sci. 2019;145:105992. doi:10.1016/j.ijthermalsci.2019.105992
  • Tang C, Le KQ, Wong CH. Physics of humping formation in laser powder bed fusion. Int J Heat Mass Transf. 2020;149:119172. doi:10.1016/j.ijheatmasstransfer.2019.119172
  • Bayat M, Thanki A, Mohanty S, et al. Keyhole-induced porosities in laser-based powder bed fusion (LPBF) of Ti6Al4V: high-fidelity modelling and experimental validation. Addit Manuf. 2019;30:100835. doi:10.1016/j.addma.2019.100835
  • Kouraytem N, Li X, Cunningham R, et al. Effect of laser-matter interaction on molten pool flow and keyhole dynamics. Phys Rev Appl. 2019;11:1. doi:10.1103/PhysRevApplied.11.064054
  • Cunningham R, Narra SP, Montgomery C, et al. Synchrotron-Based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM. 2017;69:479–484. doi:10.1007/s11837-016-2234-1
  • Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science (1979). 2019;363:849–852. doi:10.1126/science.aav4687
  • Forien J, Calta N, DePond P, et al. Detecting keyhole porosity and monitoring process signatures in additive manufacturing: an in situ pyrometry and ex situ X-ray radiography correlation. Addit Manuf. 2020;35:1–3.
  • Forien JB, Calta NP, DePond PJ, et al. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: a correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf. 2020;35:101336. doi:10.1016/j.addma.2020.101336
  • Cao L. Mesoscopic-scale numerical investigation including the influence of scanning strategy on selective laser melting process. Comput Mater Sci. 2021;189:110263. doi:10.1016/j.commatsci.2020.110263
  • Cao L. Mesoscopic-Scale numerical simulation including the influence of process parameters on SLM single-layer multi-pass formation. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:4130–4145. doi:10.1007/s11661-020-05831-z
  • Cao L, Guan W. Simulation and analysis of LPBF multi-layer single-track forming process under different particle size distributions. Int J Adv Manuf Technol. 2021;114:2141–2157. doi:10.1007/s00170-021-06987-7
  • Bayat M, Mohanty S, Hattel JH. Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer LPBF. Int J Heat Mass Transf. 2019;139:95–114. doi:10.1016/j.ijheatmasstransfer.2019.05.003
  • Katinas C, Shang W, Shin YC, et al. Modeling particle spray and capture efficiency for direct laser deposition using a four nozzle powder injection system. J Manuf Sci Eng. 2018;140:1–10. doi:10.1115/1.4038997
  • Lin J. Numerical simulation of the focused powder streams in coaxial laser cladding. J Mater Process Technol. 2000;105:17–23. doi:10.1016/S0924-0136(00)00584-7
  • Zhang A, Li D, Zhou Z, et al. Numerical simulation of powder flow field on coaxial powder nozzle in laser metal direct manufacturing. Int J Adv Manuf Technol. 2010;49:853–859. doi:10.1007/s00170-010-2657-8
  • Wen SY, Shin YC, Murthy JY, et al. Modeling of coaxial powder flow for the laser direct deposition process. Int J Heat Mass Transf. 2009;52:5867–5877. doi:10.1016/j.ijheatmasstransfer.2009.07.018
  • Dušek J, Chrust M, Bouchet G. Transitional dynamics of freely falling discs. In: Notes on numerical fluid mechanics and multidisciplinary design. Vol. 133; 2016. p. 105–116. doi:10.1007/978-3-319-27386-0_7
  • Li L, Huang Y, Zou C, et al. Numerical study on powder stream characteristics of coaxial laser metal deposition nozzle. Crystals (Basel). 2021;11:282. doi:10.3390/cryst11030282
  • Pinkerton AJ. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition. J Phys D Appl Phys. 2007;40:7323–7334. doi:10.1088/0022-3727/40/23/012
  • Pinkerton AJ. Advances in the modeling of laser direct metal deposition. J Laser Appl. 2015;27:S15001. doi:10.2351/1.4815992
  • Pinkerton AJ, Li L. A verified model of the behaviour of the axial powder stream concentration from a coaxial laser cladding nozzle. ICALEO 2002 - 21st International Congress on Applications of Laser and Electro-Optics, Congress Proceedings 2002;165528. doi:10.2351/1.5066174
  • Guan X, Zhao YF. Numerical modeling of coaxial powder stream in laser-powder-based directed energy deposition process. Addit Manuf. 2020;34:101226. doi:10.1016/j.addma.2020.101226
  • Wei HL, Liu FQ, Liao WH, et al. Prediction of spatiotemporal variations of deposit profiles and inter-track voids during laser directed energy deposition. Addit Manuf. 2020;34:101219. doi:10.1016/j.addma.2020.101219
  • Wei HL, Liu FQ, Wei L, et al. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing. J Mater Sci Technol. 2021;77:196–208. doi:10.1016/j.jmst.2020.11.032
  • Sun Z, Guo W, Li L. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process. Addit Manuf. 2020;33:101175. doi:10.1016/j.addma.2020.101175
  • Bayat M, Nadimpalli VK, Biondani FG, et al. On the role of the powder stream on the heat and fluid flow conditions during directed energy deposition of maraging steel—multiphysics modeling and experimental validation. Addit Manuf. 2021;43:102021. doi:10.1016/j.addma.2021.102021
  • Ke WC, Oliveira JP, Cong BQ, et al. Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys. Addit Manuf. 2022;50:102513. doi:10.1016/j.addma.2021.102513
  • Zhao W, Wei Y, Long J, et al. Modeling and simulation of heat transfer, fluid flow and geometry morphology in GMAW-based wire arc additive manufacturing. Weld World. 2021;65:1571–1590. doi:10.1007/s40194-021-01123-1
  • Cadiou S, Courtois M, Carin M, et al. 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam). Addit Manuf. 2020;36:101541. doi:10.1016/j.addma.2020.101541
  • Cadiou S, Courtois M, Carin M, et al. Heat transfer, fluid flow and electromagnetic model of droplets generation and melt pool behaviour for wire arc additive manufacturing. Int J Heat Mass Transf. 2020;148:119102. doi:10.1016/j.ijheatmasstransfer.2019.119102
  • Mishra AK, Kumar A. Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V. Opt Laser Technol. 2019;111:227–239. doi:10.1016/j.optlastec.2018.09.054
  • Mukherjee T, Zhang W, DebRoy T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci. 2017;126:360–372. doi:10.1016/j.commatsci.2016.10.003
  • Manvatkar V, De A, Debroy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys. 2014;116:1–8. doi:10.1063/1.4896751
  • Manvatkar V, De A, DebRoy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process. Mater Sci Technol. 2015;31:924–930. doi:10.1179/1743284714Y.0000000701
  • Mukherjee T, Wei HL, De A, et al. Heat and fluid flow in additive manufacturing – part II: powder bed fusion of stainless steel, and titanium, nickel and aluminium base alloys. Comput Mater Sci. 2018;150:369–380. doi:10.1016/j.commatsci.2018.04.027
  • Ou W, Mukherjee T, Knapp GL, et al. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing. Int J Heat Mass Transf. 2018;127:1084–1094. doi:10.1016/j.ijheatmasstransfer.2018.08.111
  • Cheng B, Li X, Tuffile C, et al. Multi-physics modeling of single track scanning in selective laser melting: powder compaction effect. Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018, 2020, p. 1887–902.
  • Fang ZC, Wu ZL, Huang CG, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts. Opt Laser Technol. 2020;129:106283. doi:10.1016/j.optlastec.2020.106283
  • Liu J, Jalalahmadi B, Guo YB, et al. A review of computational modeling in powder-based additive manufacturing for metallic part qualification. Rapid Prototyp J. 2018;24:1245–1264. doi:10.1108/RPJ-04-2017-0058
  • Li C, Liu ZY, Fang XY, et al. Residual stress in metal additive manufacturing. Procedia CIRP. 2018;71:348–353. doi:10.1016/j.procir.2018.05.039
  • Withers PJ, Bhadeshia HKDH. Residual stress. Part 2 – nature and origins. Mater Sci Technol. 2001;17:366–375. doi:10.1179/026708301101510087
  • Mercelis P, Kruth JP. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12:254–265. doi:10.1108/13552540610707013
  • Bertini L, Bucchi F, Frendo F, et al. Residual stress prediction in selective laser melting. Int J Adv Manuf Technol. 2019;105:609–636. doi:10.1007/s00170-019-04091-5
  • Li C, Fu CH, Guo YB, et al. A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol. 2016;229:703–712. doi:10.1016/j.jmatprotec.2015.10.022
  • Pantawane MV, Sharma S, Sharma A, et al. Coarsening of martensite with multiple generations of twins in laser additively manufactured Ti6Al4V. Acta Mater. 2021;213:116954. doi:10.1016/J.ACTAMAT.2021.116954
  • Matsumoto M, Shiomi M, Osakada K, et al. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tools Manuf. 2002;42:61–67. doi:10.1016/S0890-6955(01)00093-1
  • Ghosh S, Choi J. Modeling and experimental verification of transient/residual stresses and microstructure formation of multi-layer laser aided DMD process. J Heat Transfer. 2006;128:662–679. doi:10.1115/1.2194037
  • Hodge NE, Ferencz RM, Solberg JM. Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech. 2014;54:33–51. doi:10.1007/s00466-014-1024-2
  • Papadakis L, Loizou A, Risse J, et al. Numerical computation of component shape distortion manufactured by selective laser melting. Procedia CIRP. 2014;18:90–95. doi:10.1016/j.procir.2014.06.113
  • Papadakis L, Loizou A, Risse J, et al. A computational reduction model for appraising structural effects in selective laser melting manufacturing: a methodical model reduction proposed for time-efficient finite element analysis of larger components in selective laser melting. Virtual Phys Prototyp. 2014;9:17–25. doi:10.1080/17452759.2013.868005
  • Heigel JC, Michaleris P, Reutzel EW. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Addit Manuf. 2015;5:9–19. doi:10.1016/j.addma.2014.10.003
  • Yang Q, Zhang P, Cheng L, et al. Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing. Addit Manuf. 2016;12:169–177. doi:10.1016/j.addma.2016.06.012
  • Denlinger ER, Gouge M, Irwin J, et al. Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf. 2017;16:73–80. doi:10.1016/j.addma.2017.05.001
  • Li C, Liu JF, Fang XY, et al. Efficient predictive model of part distortion and residual stress in selective laser melting. Addit Manuf. 2017;17:157–168. doi:10.1016/j.addma.2017.08.014
  • Williams RJ, Davies CM, Hooper PA. A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Addit Manuf. 2018;22:416–425. doi:10.1016/j.addma.2018.05.038
  • Stender ME, Beghini LL, Sugar JD, et al. A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Addit Manuf. 2018;21:556–566. doi:10.1016/j.addma.2018.04.012
  • Song J, Wu W, Zhang L, et al. Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik (Stuttg). 2018;170:342–352. doi:10.1016/j.ijleo.2018.05.128
  • Chen Q, Liang X, Hayduke D, et al. An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering. Addit Manuf. 2019;28:406–418. doi:10.1016/j.addma.2019.05.021
  • Yang Y, Allen M, London T, et al. Residual strain predictions for a powder bed fusion Inconel 625 single cantilever part. Integr Mater Manuf Innov. 2019;8:294–304. doi:10.1007/s40192-019-00144-5
  • Ganeriwala RK, Strantza M, King WE, et al. Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Addit Manuf. 2019;27:489–502. doi:10.1016/j.addma.2019.03.034
  • Chen C, Yin J, Zhu H, et al. Effect of overlap rate and pattern on residual stress in selective laser melting. Int J Mach Tools Manuf. 2019;145:103433. doi:10.1016/j.ijmachtools.2019.103433
  • Zou S, Xiao H, Ye F, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting. Results Phys. 2020;16:103005. doi:10.1016/j.rinp.2020.103005
  • Li L, Yan L, Zeng C, et al. An efficient predictive modeling for simulating part-scale residual stress in laser metal deposition process. Int J Adv Manuf Technol. 2021;114:1819–1832. doi:10.1007/s00170-021-07005-6
  • Promoppatum P, Uthaisangsuk V. Part scale estimation of residual stress development in laser powder bed fusion additive manufacturing of Inconel 718. Finite Elem Anal Des. 2021;189:103528. doi:10.1016/j.finel.2021.103528
  • Promoppatum P, Rollett AD. Influence of material constitutive models on thermomechanical behaviors in the laser powder bed fusion of Ti-6Al-4V. Addit Manuf. 2021;37:101680. doi:10.1016/j.addma.2020.101680
  • Promoppatum P, Rollett AD. Physics-based and phenomenological plasticity models for thermomechanical simulation in laser powder bed fusion additive manufacturing: a comprehensive numerical comparison. Mater Des. 2021;204:109658. doi:10.1016/j.matdes.2021.109658
  • Jimenez X, Dong W, Paul S, et al. Residual stress modeling with phase transformation for wire arc additive manufacturing of B91 steel. JOM. 2020;72:4178–4186. doi:10.1007/s11837-020-04424-w
  • Investigation on thermal stress evolution induced by wire and arc additive manufacturing for circular thin-walled parts. Elsevier Enhanced Reader. n.d. [cited 2021 Dec 19]. Available from: https://reader.elsevier.com/reader/sd/pii/S1526612518307072?token=A8EA62D7752AF540BB8DDFAB119BF03038286EA32FBBE059261F7EE2375B650AC6AB459A7A03D7E715CE2C7DB0E067B3&originRegion=us-east-1&originCreation=20211220175314
  • Li R, Xiong J. Influence of interlayer dwell time on stress field of thin-walled components in WAAM via numerical simulation and experimental tests. Rapid Prototyp J. 2019;25:1433–1441. doi:10.1108/RPJ-03-2019-0067
  • Graf M, Hälsig A, Höfer K, et al. Thermo-mechanical modelling of wire-arc additive manufacturing (WAAM) of semi-finished products. Metals (Basel). 2018;8:1009. doi:10.3390/met8121009
  • Ding J, Colegrove P, Mehnen J, et al. A computationally efficient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol. 2014;70:227–236. doi:10.1007/s00170-013-5261-x
  • Lemaître J, Chaboche J-L. Mechanics of solid materials. Cambridge: Cambridge University Press; 1994.
  • Gouge M. Chapter 3 - convection boundary losses during laser cladding. In: Gouge M Michaleris P, editors. Thermo-mechanical modeling of additive manufacturing. Butterworth-Heinemann; 2017. doi:10.1016/B978-0-12-811820-7.00005-7
  • Ahn J, He E, Chen L, et al. Prediction and measurement of residual stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation. Mater Des. 2017;115:441–457. doi:10.1016/j.matdes.2016.11.078
  • Hussein A, Hao L, Yan C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des. 2013;52:638–647. doi:10.1016/j.matdes.2013.05.070
  • Gu D, He B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy. Comput Mater Sci. 2016;117:221–232. doi:10.1016/j.commatsci.2016.01.044
  • Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser. Opt Laser Technol. 2014;63:154–168. doi:10.1016/j.optlastec.2014.04.016
  • Li Y, Zhou K, Tan P, et al. Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci. 2018;136:24–35. doi:10.1016/j.ijmecsci.2017.12.001
  • Tan P, Shen F, Li B, et al. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V. Mater Des. 2019;168:107642. doi:10.1016/j.matdes.2019.107642
  • Parry L, Ashcroft IA, Wildman RD. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf. 2016;12:1–15. doi:10.1016/j.addma.2016.05.014
  • Parry LA, Ashcroft IA, Wildman RD. Geometrical effects on residual stress in selective laser melting. Addit Manuf. 2019;25:166–175. doi:10.1016/j.addma.2018.09.026
  • Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit Manuf. 2016;12:240–251. doi:10.1016/j.addma.2016.05.007
  • Ramos D, Belblidia F, Sienz J. New scanning strategy to reduce warpage in additive manufacturing. Addit Manuf. 2019;28:554–564. doi:10.1016/j.addma.2019.05.016
  • Sun L, Ren X, He J, et al. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing. J Mater Sci Technol. 2021;67:11–22. doi:10.1016/j.jmst.2020.05.080
  • Zhang W, Tong M, Harrison NM. Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing. Addit Manuf. 2020;36:101507. doi:10.1016/j.addma.2020.101507
  • Li C, Liu ZY, Fang XY, et al. On the simulation scalability of predicting residual stress and distortion in selective laser melting. J Manuf Sci Eng. 2018;140:1–10. doi:10.1115/1.4038893
  • Li C, Fu CH, Guo YB, et al. Fast prediction and validation of part distortion in selective laser melting. Procedia Manuf. 2015;1:355–365. doi:10.1016/j.promfg.2015.09.042
  • Ren K, Chew Y, Fuh JYH, et al. Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes. Mater Des. 2019;162:80–93. doi:10.1016/j.matdes.2018.11.014
  • Mugwagwa L, Dimitrov D, Matope S, et al. Evaluation of the impact of scanning strategies on residual stresses in selective laser melting. Int J Adv Manuf Technol. 2019;102:2441–2450. doi:10.1007/s00170-019-03396-9
  • Wu AS, Brown DW, Kumar M, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:6260–6270. doi:10.1007/s11661-014-2549-x
  • Schajer GS. Advances in hole-drilling residual stress measurements. Exp Mech. 2010;50:159–168. doi:10.1007/s11340-009-9228-7
  • Schajer GS. Hole-drilling residual stress measurements at 75: origins, advances, opportunities. Exp Mech. 2010;50:245–253. doi:10.1007/s11340-009-9285-y
  • Vrancken B, Cain V, Knutsen R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting. Scr Mater. 2014;87:29–32. doi:10.1016/j.scriptamat.2014.05.016
  • Vrancken B. Study of residual stresses in selective laser melting. PhD Thesis; KU Leuven Arenberg Doctoral School Faculty of Engineering Science. 2016; p. 1–253.
  • Kruth JP, Deckers J, Yasa E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc Inst Mech Eng B J Eng Manuf. 2012;226:980–991. doi:10.1177/0954405412437085
  • Acevedo R, Sedlak P, Kolman R, et al. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: state of the art review. J Mater Res Technol. 2020;9:9457–9477. doi:10.1016/j.jmrt.2020.05.092
  • Acevedo RBO, Kantarowska K, Santos EC, et al. Residual stress measurement techniques for Ti6Al4V parts fabricated using selective laser melting: state of the art review. Rapid Prototyp J. 2020. doi:10.1108/RPJ-04-2019-0097
  • Bartlett JL, Croom BP, Burdick J, et al. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation. Addit Manuf. 2018;22:1–12. doi:10.1016/j.addma.2018.04.025
  • Korsunsky AM, Sebastiani M, Bemporad E. Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation. Surf Coat Technol. 2010;205:2393–2403. doi:10.1016/j.surfcoat.2010.09.033
  • Denlinger ER, Heigel JC, Michaleris P, et al. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J Mater Process Technol. 2015;215:123–131. doi:10.1016/j.jmatprotec.2014.07.030
  • Marimuthu S, Clark D, Allen J, et al. Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aeroengine component. Proc Inst Mech Eng C J Mech Eng Sci. 2013;227:1987–1999. doi:10.1177/0954406212470363
  • Safronov VA, Khmyrov RS, Kotoban DV, et al. Distortions and residual stresses at layer-by-layer additive manufacturing by fusion. J Manuf Sci Eng. 2017;139:3–8. doi:10.1115/1.4034714
  • Zaeh MF, Branner G. Investigations on residual stresses and deformations in selective laser melting. Prod Eng. 2010;4:35–45. doi:10.1007/s11740-009-0192-y
  • Wang W, Ning J, Liang SY. In-situ distortion prediction in metal additive manufacturing considering boundary conditions. Int J Prec Eng Manuf . 2021;22:909–917. doi:10.1007/s12541-021-00496-z
  • Li C, Denlinger ER, Gouge MF, et al. Numerical verification of an octree mesh coarsening strategy for simulating additive manufacturing processes. Addit Manuf. 2019;30. doi:10.1016/j.addma.2019.100903
  • Schilp J, Seidel C, Krauss H, et al. Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling. Adv Mech Eng. 2014;6:217584. doi:10.1155/2014/217584
  • Zhang W, Tong M, Harrison NM. Resolution, energy and time dependence on layer scaling in finite element modelling of laser beam powder bed fusion additive manufacturing. Addit Manuf. 2019;28:610–620. doi:10.1016/j.addma.2019.05.002
  • Setien I, Chiumenti M, van der Veen S, et al. Empirical methodology to determine inherent strains in additive manufacturing. Comput Math Appl. 2019;78:2282–2295. doi:10.1016/j.camwa.2018.05.015
  • Li W, Nagaraja KM, Zhang X, et al. Multi-physics modeling of powder bed fusion process and thermal stress near porosity. Manuf Lett. 2021. https://doi.org/10.1016/j.mfglet.2021.07.012
  • Sagar VR, Lorin S, Göhl J, et al. A simulation study on the effect of particle size distribution on the printed geometry in selective laser melting. J Manuf Sci Eng. 2022;144:1–10. doi:10.1115/1.4052705
  • Chen F, Yan W. High-fidelity modelling of thermal stress for additive manufacturing by linking thermal-fluid and mechanical models. Mater Des. 2020;196:109185. doi:10.1016/j.matdes.2020.109185
  • Cao Y, Lin X, Kang N, et al. A novel high-efficient finite element analysis method of powder bed fusion additive manufacturing. Addit Manuf. 2021;46:102187. doi:10.1016/j.addma.2021.102187
  • Multiscale deformation and fracture in materials and structures. n.d.
  • Kraft T, Riedel H. Numerical simulation of solid state sintering; model and application. J Eur Ceram Soc. 2004;24:345–361. doi:10.1016/S0955-2219(03)00222-X
  • Tuncer N, Bose A. Solid-state metal additive manufacturing: a review. JOM. 2020;72:3090–3111. doi:10.1007/s11837-020-04260-y
  • Zhang K, Zhang W, Brune R, et al. Numerical simulation and experimental measurement of pressureless sintering of stainless steel part printed by binder jetting additive manufacturing. Addit Manuf. 2021;47:102330. doi:10.1016/j.addma.2021.102330
  • Tan H. Three-dimensional simulation of micrometer-sized droplet impact and penetration into the powder bed. Chem Eng Sci. 2016;153:93–107. doi:10.1016/j.ces.2016.07.015
  • Wang X, Feng F, Klecka MA, et al. Characterization and modeling of the bonding process in cold spray additive manufacturing. Addit Manuf. 2015;8:149–162. doi:10.1016/j.addma.2015.03.006
  • Tan Z, Li J, Zhang Z. Experimental and numerical studies on fabrication of nanoparticle reinforced aluminium matrix composites by friction stir additive manufacturing. J Mater Res Technol. 2021;12:1898–1912. doi:10.1016/j.jmrt.2021.04.004
  • Stubblefield GG, Fraser K, Phillips BJ, et al. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D). Mater Des. 2021;202:109514. doi:10.1016/j.matdes.2021.109514
  • Dini F, Ghaffari SA, Jafar J, et al. A review of binder jet process parameters; powder, binder, printing and sintering condition. Met Powder Rep. 2020;75:95–100. doi:10.1016/j.mprp.2019.05.001
  • Li M, Du W, Elwany A, et al. Metal binder jetting additive manufacturing: a literature review. J Manuf Sci Eng. 2020;142:1–17. doi:10.1115/1.4047430
  • Lores A, Azurmendi N, Agote I, et al. A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics. Powder Metall. 2019;62:267–296. doi:10.1080/00325899.2019.1669299
  • Maximenko AL, Olumor ID, Maidaniuk AP, et al. Modeling of effect of powder spreading on green body dimensional accuracy in additive manufacturing by binder jetting. Powder Technol. 2021;385:60–68. doi:10.1016/j.powtec.2021.02.070
  • Parab ND, Barnes JE, Zhao C, et al. Real time observation of binder jetting printing process using high-speed X-ray imaging. Sci Rep. 2019;9:1–10. doi:10.1038/s41598-019-38862-7
  • Lee Y, Nandwana P, Simunovic S. Powder spreading, densification, and part deformation in binder jetting additive manufacturing. Prog Addit Manuf. 2022;7:111–125. doi:10.1007/s40964-021-00214-1
  • Li W, Yang K, Yin S, et al. Solid-state additive manufacturing and repairing by cold spraying: a review. J Mater Sci Technol. 2018;34:440–457. doi:10.1016/J.JMST.2017.09.015
  • Prashar G, Vasudev H. A comprehensive review on sustainable cold spray additive manufacturing: state of the art, challenges and future challenges. J Clean Prod. 2021;310:127606. doi:10.1016/j.jclepro.2021.127606
  • Garmeh S, Jadidi M, Dolatabadi A. Three-Dimensional modeling of cold spray for additive manufacturing. J Therm Spray Technol. 2020;29:38–50. doi:10.1007/s11666-019-00928-3
  • Song X, Everaerts J, Zhai W, et al. Residual stresses in single particle splat of metal cold spray process – numerical simulation and direct measurement. Mater Lett. 2018;230:152–156. doi:10.1016/j.matlet.2018.07.117
  • Song X, Ng KL, Chea JMK, et al. Coupled Eulerian-Lagrangian (CEL) simulation of multiple particle impact during metal cold spray process for coating porosity prediction. Surf Coat Technol. 2020;385:125433. doi:10.1016/j.surfcoat.2020.125433
  • Wu H, Xie X, Liu M, et al. Stable layer-building strategy to enhance cold-spray-based additive manufacturing. Addit Manuf. 2020;35:101356. doi:10.1016/J.ADDMA.2020.101356
  • Zhang Z, Tan ZJ, Li JY, et al. Integrated modeling of process–microstructure–property relations in friction stir additive manufacturing. Acta Metall Sin (Engl Lett). 2020;33:75–87. doi:10.1007/s40195-019-00945-9
  • Zhang Z, Tan ZJ, Li JY, et al. Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. Int J Adv Manuf Technol. 2019;104:767–784. doi:10.1007/s00170-019-03917-6
  • Siddiq A, Ghassemieh E. Fibre embedding in aluminium alloy 3003 using ultrasonic consolidation process—thermo-mechanical analyses. Int J Adv Manuf Technol. 2011;54:997–1009. doi:10.1007/s00170-010-3007-6
  • Siddiq AM, Ghassemieh E. Modelling and characterization of ultrasonic consolidation process of aluminium alloys. Mater Res Soc Symp Proc. 2008;1079:125–132. doi:10.1557/proc-1079-n09-05
  • Zhang C, Li L. A friction-based finite element analysis of ultrasonic consolidation. Weld J. 2008; 87(7):187.
  • Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Technol. 2015;220:202–214. doi:10.1016/j.jmatprotec.2015.01.025
  • Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int J Fatigue. 2017;94:236–245. doi:10.1016/j.ijfatigue.2016.05.018
  • Seifi M, Salem A, Satko D, et al. Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBPBF Ti–6Al–4V. Int J Fatigue. 2017;94:263–287. doi:10.1016/j.ijfatigue.2016.06.001
  • Bustillos J, Kim J, Moridi A. Lack of fusion in additive manufacturing: defect or asset? ArXiv Preprint. 2021;2104.07014.
  • Soltani-Tehrani A, Shrestha R, Phan N, et al. Establishing specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing. Int J Fatigue. 2021;151:106384. doi:10.1016/j.ijfatigue.2021.106384
  • Laleh M, Hughes AE, Yang S, et al. A critical insight into lack-of-fusion pore structures in additively manufactured stainless steel. Addit Manuf. 2021;38:101762. doi:10.1016/j.addma.2020.101762
  • Gordon JV, Narra SP, Cunningham RW, et al. Defect structure process maps for laser powder bed fusion additive manufacturing. Addit Manuf. 2020;36:101552. doi:10.1016/j.addma.2020.101552
  • Paulson NH, Gould B, Wolff SJ, et al. Correlations between thermal history and keyhole porosity in laser powder bed fusion. Addit Manuf. 2020;34:101213. doi:10.1016/j.addma.2020.101213
  • Gan Z, Kafka OL, Parab N, et al. Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat Commun. 2021;12; doi:10.1038/s41467-021-22704-0
  • Reijonen J, Revuelta A, Riipinen T, et al. On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing. Addit Manuf. 2020;32:101030. doi:10.1016/j.addma.2019.101030
  • Ferro P, Meneghello R, Savio G, et al. A modified volumetric energy density–based approach for porosity assessment in additive manufacturing process design. Int J Adv Manuf Technol. 2020;110:1911–1921. doi:10.1007/s00170-020-05949-9
  • Zhao Y, Wang Z, Zhao J, et al. Comparison of substrate preheating on mechanical and microstructural properties of hybrid specimens fabricated by laser metal deposition 316 l with different wrought steel substrate. Crystals (Basel). 2020;10:1–15. doi:10.3390/cryst10100891
  • Zhao C, Parab ND, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science (1979). 2020;370:1080–1086. doi:10.1126/science.abd1587
  • Chen Y, Clark SJ, Leung CLA, et al. In-situ synchrotron imaging of keyhole mode multi-layer laser powder bed fusion additive manufacturing. Appl Mater Today. 2020;20:100650. doi:10.1016/j.apmt.2020.100650
  • Utyaganova VR, Filippov AV, Shamarin NN, et al. Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy. Int J Adv Manuf Technol. 2020;108:2823–2838. doi:10.1007/s00170-020-05539-9
  • Fu R, Tang S, Lu J, et al. Hot-wire arc additive manufacturing of aluminium alloy with reduced porosity and high deposition rate. Mater Des. 2021;199:109370. doi:10.1016/j.matdes.2020.109370
  • el Moghazi SN, Wolfe T, Ivey DG, et al. Plasma transfer arc additive manufacturing of 17-4 PH: assessment of defects. Int J Adv Manuf Technol. 2020;108:2301–2313. doi:10.1007/s00170-020-05540-2
  • Lu T, Liu C, Li Z, et al. Hot-wire arc additive manufacturing Ti–6.5Al–2Zr–1Mo–1V titanium alloy: pore characterization, microstructural evolution, and mechanical properties. J Alloys Compd. 2020;817:153334. doi:10.1016/j.jallcom.2019.153334
  • Everton SK, Hirsch M, Stavroulakis PI, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des. 2016;95:431–445. doi:10.1016/j.matdes.2016.01.099
  • Chen Y, Lu F, Zhang K, et al. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling. J Alloys Compd. 2016;670:312–321. doi:10.1016/j.jallcom.2016.01.250
  • Dovgyy B, Simonelli M, Pham MS. Alloy design against the solidification cracking in fusion additive manufacturing: an application to a FeCrAl alloy. Mater Res Lett. 2021;9:350–357. doi:10.1080/21663831.2021.1922945
  • Uddin SZ, Murr LE, Terrazas CA, et al. Processing and characterization of crack-free aluminium 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit Manuf. 2018;22:405–415. doi:10.1016/J.ADDMA.2018.05.047
  • Bidare P, Jiménez A, Hassanin H, et al. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: a review. Adv Manuf. 2022;10:175–204. doi:10.1007/s40436-021-00365-y
  • Seow CE, Zhang J, Coules HE, et al. Effect of crack-like defects on the fracture behaviour of wire + arc additively manufactured nickel-base alloy 718. Addit Manuf. 2020;36:101578. doi:10.1016/j.addma.2020.101578
  • Wei HL, Cao Y, Liao WH, et al. Mechanisms on inter-track void formation and phase transformation during laser powder bed fusion of Ti-6Al-4V. Addit Manuf. 2020;34:101221. doi:10.1016/j.addma.2020.101221
  • Dinwiddie RB, Dehoff RR, Lloyd PD, et al. Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing. SPIE Proc. 2013;8705:156–164. doi:10.1117/12.2018412
  • Mukherjee T, Manvatkar V, De A, et al. Mitigation of thermal distortion during additive manufacturing. Scr Mater. 2017;127:79–83. doi:10.1016/j.scriptamat.2016.09.001
  • Alimardani M, Toyserkani E, Huissoon JP, et al. On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental-numerical investigation. Opt Lasers Eng. 2009;47:1160–1168. doi:10.1016/j.optlaseng.2009.06.010
  • Paul R, Anand S, Gerner F. Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. J Manuf Sci Eng. 2014;136:1–12. doi:10.1115/1.4026524
  • Mukherjee T, Zuback JS, De A, et al. Printability of alloys for additive manufacturing. Sci Rep. 2016;6:1–8. doi:10.1038/srep19717
  • Girelli L, Tocci M, Montesano L, et al. Investigation of cavitation erosion resistance of AlSi10Mg alloy for additive manufacturing. Wear. 2018;402-403:124–136. doi:10.1016/j.wear.2018.02.018
  • Ding Y, Muñiz-Lerma JA, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminium alloys. MRS Bull. 2016;41:745–751. doi:10.1557/mrs.2016.214
  • Zuback JS, Palmer TA, DebRoy T. Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys. J Alloys Compd. 2019;770:995–1003. doi:10.1016/j.jallcom.2018.08.197
  • Yuan T, Yu Z, Chen S, et al. Loss of elemental Mg during wire + arc additive manufacturing of Al-Mg alloy and its effect on mechanical properties. J Manuf Process. 2020;49:456–462. doi:10.1016/j.jmapro.2019.10.033
  • Shinjo J, Panwisawas C. Digital materials design by thermal-fluid science for multi-metal additive manufacturing. Acta Mater. 2021;210:116825. doi:10.1016/j.actamat.2021.116825
  • Mertens AI, Delahaye J, Lecomte-Beckers J. Fusion-based additive manufacturing for processing aluminum alloys: state-of-the-art and challenges. Adv Eng Mater. 2017;19:1700003. doi:10.1002/adem.201700003
  • Philo AM, Butcher D, Sillars S, et al. A multiphase CFD model for the prediction of particulate accumulation in a laser powder bed fusion process. Minerals, Metals and Materials Series. 2018; Part F3:65–76. doi:10.1007/978-3-319-72059-3_7
  • Sundqvist J, Samarjy RSM. High-speed imaging of droplet behaviour during the CYCLAM drop-deposition technique. Procedia Manuf. 2019;36:208–215. doi:10.1016/j.promfg.2019.08.027
  • Samarjy RSM, Kaplan AFH. Using laser cutting as a source of molten droplets for additive manufacturing: a new recycling technique. Mater Des. 2017;125:76–84. doi:10.1016/j.matdes.2017.03.080
  • Siva Prasad H, Brueckner F, Kaplan AFH. Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition. Addit Manuf. 2020;35:101413. doi:10.1016/j.addma.2020.101413
  • Yin J, Wang D, Yang L, et al. Correlation between forming quality and spatter dynamics in laser powder bed fusion. Addit Manuf. 2020;31:100958. doi:10.1016/j.addma.2019.100958
  • Ly S, Rubenchik AM, Khairallah SA, et al. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Sci Rep. 2017;7:1–12. doi:10.1038/s41598-017-04237-z
  • Young ZA, Guo Q, Parab ND, et al. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process. Addit Manuf. 2020;36:101438. doi:10.1016/j.addma.2020.101438
  • Zheng H, Li H, Lang L, et al. Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing. J Manuf Process. 2018;36:60–67. doi:10.1016/j.jmapro.2018.09.011
  • Glukhov V, Turichin G, Klimova-Korsmik O, et al. Quality management of metal products prepared by high-speed direct laser deposition technology. Key Eng Mater. 2016;684:461–467. doi:10.4028/www.scientific.net/KEM.684.461
  • Mohammadian N, Turenne S, Brailovski V. Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J Mater Process Technol. 2018;252:728–738. doi:10.1016/j.jmatprotec.2017.10.020
  • Triantaphyllou A, Giusca CL, Macaulay GD, et al. Surface texture measurement for additive manufacturing. Surf Topogr. 2015;3; doi:10.1088/2051-672X/3/2/024002
  • Ali U, Fayazfar H, Ahmed F, et al. Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing. Vacuum. 2020;177:109314. doi:10.1016/j.vacuum.2020.109314
  • Snyder JC, Stimpson CK, Thole KA, et al. Build direction effects on additively manufactured channels. J Turbomach. 2016;138:1–8. doi:10.1115/1.4032168
  • Brennan MC, Keist JS, Palmer TA. Defects in metal additive manufacturing processes. J Mater Eng Perform. 2021;30:4808–4818. doi:10.1007/s11665-021-05919-6
  • Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci. 2021;117:100724. doi:10.1016/J.PMATSCI.2020.100724
  • Mukherjee T, DebRoy T. A digital twin for rapid qualification of 3D printed metallic components. Appl Mater Today. 2019;14:59–65. doi:10.1016/j.apmt.2018.11.003
  • Li G, Li X, Guo C, et al. Investigation into the effect of energy density on densification, surface roughness and loss of alloying elements of 7075 aluminium alloy processed by laser powder bed fusion. Opt Laser Technol. 2022;147:107621. doi:10.1016/j.optlastec.2021.107621
  • Li X, Zhao C, Sun T, et al. Revealing transient powder-gas interaction in laser powder bed fusion process through multi-physics modeling and high-speed synchrotron x-ray imaging. Addit Manuf. 2020;35:101362. doi:10.1016/j.addma.2020.101362
  • Li X, Guo Q, Chen L, et al. Quantitative investigation of gas flow, powder-gas interaction, and powder behavior under different ambient pressure levels in laser powder bed fusion. Int J Mach Tools Manuf. 2021;170:103797. doi:10.1016/j.ijmachtools.2021.103797
  • Wu C, Zafar MQ, Wang Y, et al. Multi-physics modeling of side roughness generation mechanisms in powder bed fusion. Addit Manuf. 2021;47:102274. doi:10.1016/j.addma.2021.102274
  • Kou S. Predicting susceptibility to solidification cracking and liquation cracking by calphad. Metals (Basel). 2021;11:1442. doi:10.3390/met11091442
  • Chai X, Yuan T, Kou S. Liquation and liquation cracking in partially melted zones of magnesium welds. Weld J. 2016;95:57S–67S.
  • Kou S. A simple index for predicting the susceptibility to solidification cracking. Weld J. 2015;94:374s–388s.
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549:365–369. doi:10.1038/nature23894
  • Clyne T, Davies G. The influence of composition on solidification cracking susceptibility in binary alloy systems. the influence of composition on solidification cracking susceptibility in binary alloy systems. Br Foundrym. 1981;74:65–73.
  • Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning. Acta Mater. 2022;226:117612. doi:10.1016/j.actamat.2021.117612
  • Rappaz M, Drezet JM, Gremaud M. A new hot-tearing criterion. Metall Mater Trans A. 1999;30:449–455. doi:10.1007/S11661-999-0334-Z
  • Cracking mechanism and its sensitivity to processing conditions during laser powder bed fusion of a structural aluminium alloy. Enhanced Reader n.d.
  • Cao G, Kou S. Predicting and reducing liquation-cracking susceptibility based on temperature vs. fraction solid. Weld J. 2006;85(1):9.
  • Ghoussoub JN, Tang YT, Dick-Cleland WJB, et al. On the influence of alloy composition on the additive manufacturability of Ni-based superalloys. Metall Mater Trans A Phys Metall Mater Sci. 2022;53:962–983. doi:10.1007/s11661-021-06568-z
  • Nestler B, Choudhury A. Phase-field modeling of multi-component systems. Curr Opin Solid State Mater Sci. 2011;15:93–105. doi:10.1016/j.cossms.2011.01.003
  • Tourret D, Liu H, LLorca J. Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges. Prog Mater Sci. 2022;123:100810. doi:10.1016/j.pmatsci.2021.100810
  • Steinbach I. Phase-field models in materials science. Model Simul Mat Sci Eng. 2009;17:073001. doi:10.1088/0965-0393/17/7/073001
  • Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. interfacial free energy. J Chem Phys. 1958;28:258–267. doi:10.1063/1.1744102
  • Cahn JW, Hilliard JE. Free energy of a nonuniform system. III. nucleation in a two-component incompressible fluid. J Chem Phys. 1959;31:688–699. doi:10.1063/1.1730447
  • Cahn JW. On spinodal decomposition. Acta Metall. 1961;9:795–801. doi:10.1016/0001-6160(61)90182-1
  • Cahn JW, Allen SM. Microscopic theory for domain wall motion and its experimental verification in Fe-al alloy domain growth kinetics. J Phys (Paris) Colloq. 1977;38:C7-51–C7-54. doi:10.1051/jphyscol:1977709
  • Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979;27:1085–1095. doi:10.1016/0001-6160(79)90196-2
  • Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification. Physical Review E. 2004;70:22. doi:10.1103/PhysRevE.70.061604
  • Bragard J, Karma A, Lee YH, et al. Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts. Interface Sci. 2002;10:121–136. doi:10.1023/A:1015815928191
  • Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys. Acta Mater. 2012;60:1633–1646. doi:10.1016/j.actamat.2011.12.009
  • Körner C, Markl M, Koepf JA. Modeling and simulation of microstructure evolution for additive manufacturing of metals: a critical review. Metall Mater Trans A. 2020;51:4970–4983. doi:10.1007/S11661-020-05946-3
  • Tan JHK, Sing SL, Yeong WY. Microstructure modelling for metallic additive manufacturing: a review. Virtual Phys Prototyp. 2020;15:87–105. doi:10.1080/17452759.2019.1677345
  • Gandin CA, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall Mater. 1994;42:2233–2246. doi:10.1016/0956-7151(94)90302-6
  • Guillemot G, Gandin CA, Combeau H, et al. A new cellular automaton—finite element coupling scheme for alloy solidification. Model Simul Mat Sci Eng. 2004;12:545–556. doi:10.1088/0965-0393/12/3/013
  • Raabe D. Cellular automata in materials science with particular reference to recrystallization simulation. Annu Rev Mater Res. 2002;32:53–76. doi:10.1146/annurev.matsci.32.090601.152855
  • Azarbarmas M. Modeling the dynamic recrystallization by using cellular automaton: the current status, challenges and future prospects. Iran J Mater Sci Eng. 2020;17:103–129. doi:10.22068/IJMSE.17.4.103
  • Sun Z, Tan X, Tor SB, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 2018;10:127–136. doi:10.1038/s41427-018-0018-5
  • Rodgers TM, Madison JD, Tikare V. Simulation of metal additive manufacturing microstructures using kinetic monte carlo. Comput Mater Sci. 2017;135:78–89. doi:10.1016/J.COMMATSCI.2017.03.053
  • Pantawane MV, Sharma S, Dasari S, et al. Spatial variation of thermokinetics and associated microstructural evolution in laser surface engineered IN718: precursor to additive manufacturing. Metall Mater Trans A. 2021;52:2344–2360. doi:10.1007/s11661-021-06227-3
  • Pantawane MV, Dasari S, Mantri SA, et al. Rapid thermokinetics driven nanoscale vanadium clustering within martensite laths in laser powder bed fused additively manufactured Ti6Al4V. Mater Res Lett. 2020;8:383–389. doi:10.1080/21663831.2020.1772396
  • Pantawane MV, Yang T, Jin Y, et al. Thermomechanically influenced dynamic elastic constants of laser powder bed fusion additively manufactured Ti6Al4V. Mater Sci Eng A. 2021;811:140990. doi:10.1016/j.msea.2021.140990
  • Pantawane MV, Yang T, Jin Y, et al. Crystallographic texture dependent bulk anisotropic elastic response of additively manufactured Ti6Al4V. Sci Rep. 2021;11:633. doi:10.1038/s41598-020-80710-6
  • Kou S. Welding metallurgy. 2nd ed. Hoboken (NJ): John Wiley & Sons; 2003. https://doi.org/10.1557/MRS2003.197
  • Liu W, Dupont JN. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (part II). Acta Mater. 2005;53:1545–1558. doi:10.1016/J.ACTAMAT.2004.12.007
  • Liu W, DuPont JN. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals: mathematical modeling of single-crystal growth in a melt pool (part I). Acta Mater. 2004;52:4833–4847. doi:10.1016/J.ACTAMAT.2004.06.041
  • Wang L, Wang N, Yao WJ, et al. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys. Acta Mater. 2015;88:283–292. doi:10.1016/J.ACTAMAT.2015.01.063
  • Wang L, Wang N. Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys: experimental investigation. Acta Mater. 2016;104:250–258. doi:10.1016/J.ACTAMAT.2015.11.018
  • Gäumann M, Henry S, Cléton F, et al. Epitaxial laser metal forming: analysis of microstructure formation. Mater Sci Eng A. 1999;271:232–241. doi:10.1016/S0921-5093(99)00202-6
  • Bermingham MJ, StJohn DH, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 2019;168:261–274. doi:10.1016/j.actamat.2019.02.020
  • Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater. 2001;49:1051–1062. doi:10.1016/S1359-6454(00)00367-0
  • Zhao Y, Koizumi Y, Aoyagi K, et al. Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBPBF) of a biomedical Co-Cr-Mo alloy. Addit Manuf. 2019;26:202–214. doi:10.1016/j.addma.2018.12.002
  • Bontha S, Klingbeil NW, Kobryn PA, et al. Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures. Mater Sci Eng A. 2009;513-514:311–318. doi:10.1016/j.msea.2009.02.019
  • Promoppatum P, Yao SC, Pistorius PC, et al. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering. 2017;3:685–694. doi:10.1016/J.ENG.2017.05.023
  • Pistor J, Körner C. A novel mechanism to generate metallic single crystals. Sci Rep. 2021;11:1–8. doi:10.1038/s41598-021-04235-2
  • Fernandez-Zelaia P, Ledford C, Ellis EAI, et al. Crystallographic texture evolution in electron beam melting additive manufacturing of pure molybdenum. Mater Des. 2021;207:109809. doi:10.1016/j.matdes.2021.109809
  • Sahoo S, Chou K. Phase-field simulation of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process. Addit Manuf. 2016;9:14–24. doi:10.1016/j.addma.2015.12.005
  • Lu LX, Sridhar N, Zhang YW. Phase field simulation of powder bed-based additive manufacturing. Acta Mater. 2018;144:801–809. doi:10.1016/j.actamat.2017.11.033
  • Kundin J, Mushongera L, Emmerich H. Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 superalloy. Acta Mater. 2015;95:343–356. doi:10.1016/j.actamat.2015.05.052
  • Acharya R, Sharon JA, Staroselsky A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017;124:360–371. doi:10.1016/j.actamat.2016.11.018
  • Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 2017;139:244–253. doi:10.1016/j.actamat.2017.05.003
  • Kumara C, Segerstark A, Hanning F, et al. Microstructure modelling of laser metal powder directed energy deposition of alloy 718. Addit Manuf. 2019;25:357–364. doi:10.1016/j.addma.2018.11.024
  • Song B, Yu T, Jiang X, et al. Development of the molten pool and solidification characterization in single bead multilayer direct energy deposition. Addit Manuf. 2022:102479. doi:10.1016/j.addma.2021.102479
  • McCartney DG, Hunt JD. Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys. Acta Metall. 1981;29:1851–1863. doi:10.1016/0001-6160(81)90111-5
  • Liu S, Shin YC. Thermodynamically consistent phase-field modeling of competitive polycrystalline growth of beta grains during additive manufacturing of Ti6Al4V. J Cryst Growth. 2021;564:126112. doi:10.1016/j.jcrysgro.2021.126112
  • Berry J, Perron A, Fattebert JL, et al. Toward multiscale simulations of tailored microstructure formation in metal additive manufacturing. Mater Today. 2021;51:65–86. doi:10.1016/j.mattod.2021.09.024
  • Liu PW, Ji YZ, Wang Z, et al. Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. J Mater Process Technol. 2018;257:191–202. doi:10.1016/j.jmatprotec.2018.02.042
  • Fallah V, Alimardani M, Corbin SF, et al. Temporal development of melt-pool morphology and clad geometry in laser powder deposition. Comput Mater Sci. 2011;50:2124–2134. doi:10.1016/j.commatsci.2011.02.018
  • Nabavizadeh SA, Eshraghi M, Felicelli SD. Three-dimensional phase field modeling of columnar to equiaxed transition in directional solidification of Inconel 718 alloy. J Cryst Growth. 2020;549:125879. doi:10.1016/j.jcrysgro.2020.125879
  • Liu P, Wang Z, Xiao Y, et al. Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing. Addit Manuf. 2019;26:22–29. doi:10.1016/j.addma.2018.12.019
  • Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Metall. 1986;34:823–830. doi:10.1016/0001-6160(86)90056-8
  • Wang X, Chou K. Microstructure simulations of Inconel 718 during selective laser melting using a phase field model. Int J Adv Manuf Technol. 2019;100:2147–2162. doi:10.1007/s00170-018-2814-z
  • Rai A, Markl M, Körner C. A coupled cellular automaton–lattice boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci. 2016;124:37–48. doi:10.1016/j.commatsci.2016.07.005
  • Rai A, Helmer H, Körner C. Simulation of grain structure evolution during powder bed based additive manufacturing. Addit Manuf. 2017;13:124–134. doi:10.1016/j.addma.2016.10.007
  • Zinoviev A, Zinovieva O, Ploshikhin V, et al. Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method. Mater Des. 2016;106:321–329. doi:10.1016/j.matdes.2016.05.125
  • Zinovieva O, Zinoviev A, Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci. 2018;141:207–220. doi:10.1016/j.commatsci.2017.09.018
  • Gandin CA, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Mater. 1997;45:2187–2195. doi:10.1016/S1359-6454(96)00303-5
  • Koepf JA, Gotterbarm MR, Markl M, et al. 3D multi-layer grain structure simulation of powder bed fusion additive manufacturing. Acta Mater. 2018;152:119–126. doi:10.1016/j.actamat.2018.04.030
  • Koepf JA, Soldner D, Ramsperger M, et al. Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting. Comput Mater Sci. 2019;162:148–155. doi:10.1016/j.commatsci.2019.03.004
  • Zhang J, Liou F, Seufzer W, et al. A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD). Addit Manuf. 2016;11:32–39. doi:10.1016/j.addma.2016.04.004
  • Zhang Y, Zhang J. Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata. Addit Manuf. 2019;28:750–765. doi:10.1016/j.addma.2019.06.024
  • Li X, Tan W. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Comput Mater Sci. 2018;153:159–169. doi:10.1016/j.commatsci.2018.06.019
  • Mohebbi MS, Ploshikhin V. Implementation of nucleation in cellular automaton simulation of microstructural evolution during additive manufacturing of Al alloys. Addit Manuf. 2020;36:101726. doi:10.1016/j.addma.2020.101726
  • Zhang J, Song B, Wei Q, et al. A review of selective laser melting of aluminium alloys: processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35:270–284. doi:10.1016/j.jmst.2018.09.004
  • Wei HL, Knapp GL, Mukherjee T, et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718. Addit Manuf. 2019;25:448–459. doi:10.1016/j.addma.2018.11.028
  • Yang YP, Jamshidinia M, Boulware P, et al. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput Mech. 2018;61:599–615. doi:10.1007/s00466-017-1528-7
  • Pauza JG, Tayon WA, Rollett AD. Computer simulation of microstructure development in powder-bed additive manufacturing with crystallographic texture. Model Simul Mat Sci Eng. 2021;29:055019. doi:10.1088/1361-651X/ac03a6
  • Rodgers TM, Moser D, Abdeljawad F, et al. Simulation of powder bed metal additive manufacturing microstructures with coupled finite difference-Monte Carlo method. Addit Manuf. 2021;41:101953. doi:10.1016/j.addma.2021.101953
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Netherlands: Elsevier; 2012.
  • Sakai T. Dynamic recrystallization microstructures under hot working conditions. J Mater Process Technol. 1995;53:349–361.
  • Doherty RD, Hughes DA, Humphreys FJ, et al. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238:219–274.
  • Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574.
  • Prasad Y, Ravichandran N. Effect of stacking fault energy on the dynamic recrystallization during hot working of FCC metals: a study using processing maps. Bull Mater Sci. 1991;14:1241–1248.
  • McQueen HJ, Blum W. Dynamic recovery: sufficient mechanism in the hot deformation of Al (99.99). Mater Sci Eng A. 2000;290:95–107.
  • Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 2001;49:1199–1207.
  • Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1944;15:22–32.
  • Montheillet F, Le Coze J. Influence of purity on the dynamic recrystallization of metals and alloys. Phys Status Solidi (a). 2002;189:51–58.
  • Chen M-S, Yuan W-Q, Li H-B, et al. New insights on the relationship between flow stress softening and dynamic recrystallization behavior of magnesium alloy AZ31B. Mater Charact. 2019;147:173–183.
  • Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater. 1998;46:69–80.
  • Sabzi HE, Aboulkhair NT, Liang X, et al. Grain refinement in laser powder bed fusion: the influence of dynamic recrystallization and recovery. Mater Des. 2020;196:109181.
  • Sriraman MR, Babu SS, Short M. Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scr Mater. 2010;62:560–563.
  • Sridharan N, Wolcott P, Dapino M, et al. Microstructure and texture evolution in aluminium and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing. Scr Mater. 2016;117:1–5.
  • Sridharan N, Wolcott P, Dapino M, et al. Microstructure and mechanical property characterisation of aluminium–steel joints fabricated using ultrasonic additive manufacturing. Sci Technol Weld Joining. 2017;22:373–380.
  • Sridharan N, Gussev MN, Parish CM, et al. Evaluation of microstructure stability at the interfaces of Al-6061 welds fabricated using ultrasonic additive manufacturing. Mater Charact. 2018;139:249–258.
  • Dehoff RR, Babu SS. Characterization of interfacial microstructures in 3003 aluminium alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater. 2010;58:4305–4315.
  • Li P, Wang Z, Diao M, et al. Dynamic recrystallization and recovery in very high-power ultrasonic additive manufacturing. Adv Eng Mater. 2021;23:2000958.
  • Griffiths RJ, Garcia D, Song J, et al. Solid-state additive manufacturing of aluminium and copper using additive friction stir deposition: process-microstructure linkages. Materialia (Oxf). 2021;15:100967.
  • Sharma A, Bandari V, Ito K, et al. A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing. J Manuf Process. 2017;26:122–130.
  • Mason CJT, Rodriguez RI, Avery DZ, et al. Process-structure-property relations for as-deposited solid-state additively manufactured high-strength aluminium alloy. Addit Manuf. 2021;40:101879.
  • Yuqing M, Liming K, Chunping H, et al. Formation characteristic, microstructure, and mechanical performances of aluminium-based components by friction stir additive manufacturing. Int J Adv Manuf Technol. 2016;83:1637–1647.
  • Garcia D, Hartley WD, Rauch HA, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: a comparative study of Cu and Al-Mg-Si. Addit Manuf. 2020;34:101386.
  • Yang H, Wu C, Li H, et al. Review on cellular automata simulations of microstructure evolution during metal forming process: grain coarsening, recrystallization and phase transformation. Sci China Technol Sci. 2011;54:2107–2118. doi:10.1007/s11431-011-4464-3
  • Yazdipour N, Davies CHJ, Hodgson PD. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comput Mater Sci. 2008;44:566–576. doi:10.1016/j.commatsci.2008.04.027
  • Prosgolitis CG, Lambrakos SG, Zervaki AD. Phase-Field modeling of nugget zone for a AZ31-Mg-alloy friction stir weld. J Mater Eng Perform. 2018;27:5102–5113. doi:10.1007/s11665-018-3471-y
  • Abbasi M, Bagheri B, Sharifi F. Simulation and experimental study of dynamic recrystallization process during friction stir vibration welding of magnesium alloys. Trans Nonferrous Met Soc China (Engl Ed). 2021;31:2626–2650. doi:10.1016/S1003-6326(21)65681-9
  • Zhang S, Zheng L, Zhang H. Microstructure evolution and bond formation at the contact interface during ultrasonic consolidation process. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 14, 2014. doi:10.1115/IMECE2014-37203
  • Biswas S, Schwen D, Wang H, et al. Phase field modeling of sintering: role of grain orientation and anisotropic properties. Comput Mater Sci. 2018;148:307–319. doi:10.1016/j.commatsci.2018.02.057
  • Biswas S, Schwen D, Singh J, et al. A study of the evolution of microstructure and consolidation kinetics during sintering using a phase field modeling based approach. Vol. 7. 2016. doi:10.1016/j.eml.2016.02.017
  • Park J, Kang JH, Oh CS. Phase-field simulations and microstructural analysis of epitaxial growth during rapid solidification of additively manufactured AlSi10Mg alloy. Mater Des. 2020;195:108985. doi:10.1016/j.matdes.2020.108985
  • Yang M, Wang L, Yan W. Phase-field modeling of grain evolution in additive manufacturing with addition of reinforcing particles. Addit Manuf. 2021;47:102286. doi:10.1016/j.addma.2021.102286
  • Termuhlen R, Chatzistavrou X, Nicholas JD, et al. Three-dimensional phase field sintering simulations accounting for the rigid-body motion of individual grains. Comput Mater Sci. 2021;186:109963. doi:10.1016/j.commatsci.2020.109963
  • Geng R, Du J, Wei Z, et al. Modelling and experimental observation of the deposition geometry and microstructure evolution of aluminium alloy fabricated by wire-arc additive manufacturing. J Manuf Process. 2021;64:369–378. doi:10.1016/j.jmapro.2021.01.037
  • Baumard A, Ayrault D, Fandeur O, et al. Numerical prediction of grain structure formation during laser powder bed fusion of 316 L stainless steel. Mater Des. 2021;199:1–14. doi:10.1016/j.matdes.2020.109434
  • Rolchigo M, Stump B, Belak J, et al. Sparse thermal data for cellular automata modeling of grain structure in additive manufacturing. Model Simul Mat Sci Eng. 2020;28:065003. doi:10.1088/1361-651X/ab9734
  • Teferra K, Rowenhorst DJ. Optimizing the cellular automata finite element model for additive manufacturing to simulate large microstructures. Acta Mater. 2021;213:116930. doi:10.1016/j.actamat.2021.116930
  • Sun W, Shan F, Zong N, et al. Simulation of solidified β grain for Ti-6Al-4V during wire laser additive manufacturing by three-dimensional cellular automaton method. Model Simul Mat Sci Eng. 2021;29:065006. doi:10.1088/1361-651X/ac0c23
  • Asadi P, Givi MKB, Akbari M. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int J Adv Manuf Technol. 2016;83:301–311. doi:10.1007/s00170-015-7595-z
  • Sunny S, Yu H, Mathews R, et al. Improved grain structure prediction in metal additive manufacturing using a dynamic kinetic Monte Carlo framework. Addit Manuf. 2021;37:101649. doi:10.1016/j.addma.2020.101649
  • Zhang Y, Xiao X, Zhang J. Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography. Results Phys. 2019;13:102336. doi:10.1016/j.rinp.2019.102336
  • Weisz-Patrault D. Fast simulation of temperature and phase transitions in directed energy deposition additive manufacturing. Addit Manuf. 2020;31:100990. doi:10.1016/J.ADDMA.2019.100990
  • Cain V, Thijs L, van Humbeeck J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit Manuf. 2015;5:68–76. doi:10.1016/J.ADDMA.2014.12.006
  • Facchini L, Magalini E, Robotti P, et al. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J. 2009;15:171–178. doi:10.1108/13552540910960262/FULL/PDF
  • Todaro CJ, Easton MA, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun. 2020;11:1–9. doi:10.1038/s41467-019-13874-z
  • Singh AK, Kumar B, Jha K, et al. Friction stir welding of additively manufactured Ti-6Al-4V: microstructure and mechanical properties. J Mater Process Technol. 2020;277:116433. doi:10.1016/J.JMATPROTEC.2019.116433
  • Polozov I, Sufiiarov V, Popovich A, et al. Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing. J Alloys Compd. 2018;763:436–445. doi:10.1016/J.JALLCOM.2018.05.325
  • Murr LE, Gaytan SM, Ceylan A, et al. Google Scholar. n.d. [cited 2021 Dec 12]. Available from: https://scholar.google.com/scholar?hl=en&q=%0AL.+E.+Murr%2C+%0AS.+M.+Gaytan%2C+%0AA.+Ceylan%2C+%0AE.+Martinez%2C+%0AJ.+L.+Martinez%2C+%0AD.+H.+Hernandez%2C+%0AB.+I.+Machado%2C+%0AD.+A.+Ramirez%2C+%0AF.+Medina%2C+%0AS.+Collins%2C+%0AActa+Mater.+%0A2010%2C+%0A58%2C+1887.%0A
  • Zhang F, Yang M, Clare AT, et al. Microstructure and mechanical properties of Ti-2Al alloyed with Mo formed in laser additive manufacture. J Alloys Compd. 2017;727:821–831. doi:10.1016/J.JALLCOM.2017.07.324
  • Carlton HD, Klein KD, Elmer JW. Evolution of microstructure and mechanical properties of selective laser melted Ti-5Al-5V-5Mo-3Cr after heat treatments. Sci Technol Weld Joining. 2019;24:465–473. doi:10.1080/13621718.2019.1594589
  • Deng H, Chen L, Qiu W, et al. Microstructure and mechanical properties of as-deposited and heat treated Ti–5Al–5Mo–5V–3Cr–1Zr (Ti-55531) alloy fabricated by laser melting deposition. J Alloys Compd. 2019;810:151792. doi:10.1016/J.JALLCOM.2019.151792
  • Wang Q, Han C, Choma T, et al. Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting. Mater Des. 2017;126:268–277. doi:10.1016/J.MATDES.2017.04.026
  • Hitzler L, Alifui-Segbaya F, Williams P, et al. Additive manufacturing of cobalt-based dental alloys: analysis of microstructure and physicomechanical properties. Adv Mater Sci Eng. 2018;2018:1–12. doi:10.1155/2018/8213023
  • Kircher RS, Christensen AM, Wurth KW. Electron Beam Melted (EBPBF) Co-Cr-Mo Alloy for Orthopaedic Implant Applications. n.d.
  • Mantrala KM, Rao CS, Kesava Rao VVS, et al. Effect of process parameters on the tensile properties of LENS deposited Co-Cr-Mo alloy. Int J Manuf Technol Manage. 2018;32:509–516. doi:10.1504/IJMTM.2018.095039
  • Zhao X, Chen J, Lin X, et al. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng A. 2008;478:119–124. doi:10.1016/J.MSEA.2007.05.079
  • Griffith ML, Ensz MT, Puskar JD, et al. Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). MRS Online Proc Lib (OPL). 2000;625:9. doi:10.1557/PROC-625-9
  • Yadroitsev I, Thivillon L, Bertrand P, et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl Surf Sci. 2007;254:980–983. doi:10.1016/J.APSUSC.2007.08.046
  • Amato K, Hernandez J, Murr LE, et al. Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron beam melting. J Mater Sci Res. 2012;1:3. doi:10.5539/JMSR.V1N2P3
  • Sert E, Hitzler L, Hafenstein S, et al. Tensile and compressive behaviour of additively manufactured AlSi10Mg samples. Prog Addit Manuf. 2020;5:305–313. doi:10.1007/S40964-020-00131-9
  • Wang X, Li L, Qu J, et al. Microstructure and mechanical properties of laser metal deposited AlSi10Mg alloys. Mater Sci Technol. 2019;35:2284–2293. doi:10.1080/02670836.2019.1674022
  • Prashanth KG, Debalina B, Wang Z, et al. Tribological and corrosion properties of Al–12Si produced by selective laser melting. J Mater Res. 2014;29:2044–2054. doi:10.1557/JMR.2014.133
  • Gu T, Chen B, Tan C, et al. Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy. Opt Laser Technol. 2019;112:140–150. doi:10.1016/J.OPTLASTEC.2018.11.008
  • Kenevisi MS, Lin F. Selective electron beam melting of high strength Al2024 alloy; microstructural characterization and mechanical properties. J Alloys Compd. 2020;843:155866. doi:10.1016/J.JALLCOM.2020.155866
  • Zhang H, Zhu H, Qi T, et al. Selective laser melting of high strength Al–Cu–Mg alloys: processing, microstructure and mechanical properties. Mater Sci Eng A. 2016;656:47–54. doi:10.1016/J.MSEA.2015.12.101
  • Bradford RL, Cao L, Klosterman D, et al. A metal–metal powder formulation approach for laser additive manufacturing of difficult-to-print high-strength aluminium alloys. Mater Lett. 2021;300:130113. doi:10.1016/J.MATLET.2021.130113
  • Reschetnik W, Brüggemann JP, Aydinöz ME, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy. Procedia Struct Integrity. 2016;2:3040–3048. doi:10.1016/J.PROSTR.2016.06.380
  • Spierings AB, Dawson K, Kern K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment. Mater Sci Eng A. 2017;701:264–273. doi:10.1016/j.msea.2017.06.089
  • Jia Q, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al[sbnd]Mn[sbnd]Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 2019;171:108–118. doi:10.1016/j.actamat.2019.04.014
  • Liu L, Ding Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater Today. 2018;21:354–361. doi:10.1016/J.MATTOD.2017.11.004
  • Yu J, Rombouts M, Maes G. Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition. Mater Des. 2013;45:228–235. doi:10.1016/J.MATDES.2012.08.078
  • Guan K, Wang Z, Gao M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des. 2013;50:581–586. doi:10.1016/J.MATDES.2013.03.056
  • Xue L, Chen J, Wang S-H. Freeform laser consolidated H13 and CPM 9V tool steels. Metall Microstruct and Anal. 2013;2:67–78. doi:10.1007/S13632-013-0061-0
  • Mazur M, Brincat P, Leary M, et al. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol. 2017;93:881–900. doi:10.1007/S00170-017-0426-7
  • Yadollahi A, Shamsaei N, Thompson SM, et al. Mechanical and microstructural properties of selective laser melted 17-4 PH stainless steel. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 2016. 2A-2015. doi:10.1115/IMECE2015-52362
  • Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 2010;58:1152–1211. doi:10.1016/j.actamat.2009.10.058
  • Fressengeas C, Acharya A, Beaudoin AJ. Dislocation mediated continuum plasticity: case studies on modeling scale dependence, scale-invariance, and directionality of sharp yield-point. In: Ghosh S, Dimiduk D, editors. Computational methods for microstructure-property relationships. Boston (MA): Springer; 2011. doi:10.1007/978-1-4419-0643-4_8
  • Raabe D, Roters F. Using texture components in crystal plasticity finite element simulations. Int J Plast. 2004;20:339–361. doi:10.1016/S0749-6419(03)00092-5
  • Roters F, Eisenlohr P, Bieler TR, et al. Crystal plasticity finite element methods: in materials science and engineering. Germany: Wiley; 2011.
  • Kapoor K, Suk Y, Yoo J, et al. Incorporating grain-level residual stresses and validating a crystal plasticity model of a two-phase Ti-6Al-4 V alloy produced via additive manufacturing. J Mech Phys Solids. 2018;121:447–462. doi:10.1016/j.jmps.2018.07.025
  • Lindroos M, Pinomaa T, Antikainen A, et al. Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticity. Addit Manuf. 2021;38:101819. doi:10.1016/j.addma.2020.101819
  • Bond DM, Zikry MA. Effects of electron beam manufacturing induced defects on fracture in Inconel 718. Addit Manuf. 2020;32:101059. doi:10.1016/J.ADDMA.2020.101059
  • Diehl M, Groeber M, Haase C, et al. Identifying structure–property relationships through DREAM.3D representative volume elements and DAMASK crystal plasticity simulations: an integrated computational materials engineering approach. JOM. 2017;69:848–855. doi:10.1007/s11837-017-2303-0
  • Nammalvar Raja Rajan A, Krochmal M, Wegener T, et al. Micromechanical modeling of AlSi10Mg processed by laser-based additive manufacturing: from as-built to heat-treated microstructures. Materials (Basel). 2022;15:5562. doi:10.3390/ma15165562
  • Sedighiani K, Diehl M, Traka K, et al. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves. Int J Plast. 2020;134:102779. doi:10.1016/j.ijplas.2020.102779
  • Smith M, Guan Z, Cantwell WJ. Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci. 2013;67:28–41. doi:10.1016/j.ijmecsci.2012.12.004
  • Hedayati R, Hosseini-Toudeshky H, Sadighi M, et al. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials. Int J Fatigue. 2016;84:67–79. doi:10.1016/j.ijfatigue.2015.11.017
  • Taheri Andani M, Haberland C, Walker JM, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing. J Intell Mater Syst Struct. 2016;27:2661–2671. doi:10.1177/1045389X16641199
  • Kramer SLB, Jones A, Mostafa A, et al. The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal. Int J Fract. 2019; 218: 5–61. doi:10.1007/s10704-019-00361-1
  • Antou G, Montavon G, Hlawka F, et al. Characterizations of the pore-crack network architecture of thermal-sprayed coatings. Mater Charact. 2004;53:361–372. doi:10.1016/j.matchar.2004.08.015
  • Ozturk T, Rollett AD. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures. Comput Mech. 2018;61:55–70. doi:10.1007/s00466-017-1467-3
  • Ahmadi A, Mirzaeifar R, Moghaddam NS, et al. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework. Mater Des. 2016;112:328–338. doi:10.1016/j.matdes.2016.09.043
  • Taheri Andani M, Karamooz-Ravari MR, Mirzaeifar R, et al. Micromechanics modeling of metallic alloys 3D printed by selective laser melting. Mater Des. 2018;137:204–213. doi:10.1016/j.matdes.2017.10.026
  • Cocke CK, Rollett AD, Lebensohn RA, et al. The AFRL additive manufacturing modeling challenge: predicting micromechanical fields in AM IN625 using an FFT-based method with direct input from a 3D microstructural image. Integr Mater Manuf Innov. 2021;10:157–176. doi:10.1007/s40192-021-00211-w
  • Liu PW, Wang Z, Xiao YH, et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials. Int J Plast. 2020;128:102670.
  • Rodgers TM, Bishop JE, Madison JD. Direct numerical simulation of mechanical response in synthetic additively manufactured microstructures. Model Simul Mat Sci Eng. 2018;26:055010. doi:10.1088/1361-651X/aac616
  • Herriott C, Li X, Kouraytem N, et al. A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Model Simul Mat Sci Eng. 2019;27:025009. doi:10.1088/1361-651X/aaf753
  • Yan W, Lian Y, Yu C, et al. An integrated process–structure–property modeling framework for additive manufacturing. Comput Methods Appl Mech Eng. 2018;339:184–204. doi:10.1016/j.cma.2018.05.004
  • Shi R, Khairallah S, Heo TW, et al. Integrated simulation framework for additively manufactured Ti-6Al-4V: melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response. JOM. 2019;71:3640–3655. doi:10.1007/s11837-019-03618-1
  • Tao F, Member S, Zhang H, et al. Digital twin in industry: state-of-the-art. IEEE Trans Industr Inform 2018; p. 1. doi:10.1109/TII.2018.2873186
  • Tabaste O, Lacan F, Liu C, et al. Digital twin-enabled collaborative data management for metal additive manufacturing systems. J Manuf Syst. 2022;62:857–874. doi:10.1016/j.jmsy.2020.05.010
  • Gunasegaram DR, Murphy AB, Barnard A, et al. Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. Addit Manuf. 2021;46:102089. doi:10.1016/j.addma.2021.102089
  • Guo S, Agarwal M, Cooper C, et al. Machine learning for metal additive manufacturing: towards a physics-informed data-driven paradigm. J Manuf Syst. 2022;62:145–163. doi:10.1016/j.jmsy.2021.11.003
  • Gunasegaram DR, Murphy AB, Matthews MJ, et al. The case for digital twins in metal additive manufacturing. J Phys Mater. 2021;4:040401. doi:10.1088/2515-7639/ac09fb
  • Wang C, Tan XP, Tor SB, et al. Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit Manuf. 2020;36:101538. doi:10.1016/j.addma.2020.101538
  • Jin Z, Zhang Z, Demir K, et al. Machine learning for advanced additive manufacturing. Matter. 2020;3:1541–1556. doi:10.1016/j.matt.2020.08.023
  • Johnson NS, Vulimiri PS, To AC, et al. Invited review: machine learning for materials developments in metals additive manufacturing. Addit Manuf. 2020;36:101641. doi:10.1016/j.addma.2020.101641
  • Jiang J, Xiong Y, Zhang Z, et al. Machine learning integrated design for additive manufacturing. J Intell Manuf. 2022;33:1073–1086. doi:10.1007/s10845-020-01715-6
  • Park HS, Nguyen DS, Le-Hong T, et al. Machine learning-based optimization of process parameters in selective laser melting for biomedical applications. J Intell Manuf. 2022;33:1843–1858. doi:10.1007/s10845-021-01773-4
  • DebRoy T, Mukherjee T, Wei HL, et al. Metallurgy, mechanistic models and machine learning in metal printing. Nat Rev Mater. 2021;6:48–68. doi:10.1038/s41578-020-00236-1
  • Baturynska I, Martinsen K. Prediction of geometry deviations in additive manufactured parts: comparison of linear regression with machine learning algorithms. J Intell Manuf. 2021;32:179–200. doi:10.1007/s10845-020-01567-0
  • Barrionuevo GO, Ramos-Grez JA, Walczak M, et al. Comparative evaluation of supervised machine learning algorithms in the prediction of the relative density of 316L stainless steel fabricated by selective laser melting. Int J Adv Manuf Technol. 2021;113:419–433. doi:10.1007/s00170-021-06596-4
  • Caggiano A, Zhang J, Alfieri V, et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Ann. 2019;68:451–454. doi:10.1016/j.cirp.2019.03.021
  • Delli U, Chang S. Automated process monitoring in 3D printing using supervised machine learning. Procedia Manuf. 2018;26:865–870. doi:10.1016/j.promfg.2018.07.111
  • Scime L, Beuth J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit Manuf. 2019;25:151–165. doi:10.1016/j.addma.2018.11.010
  • Meng L, Zhang J. Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JOM. 2020;72:420–428. doi:10.1007/s11837-019-03792-2
  • Meng L, McWilliams B, Jarosinski W, et al. Machine learning in additive manufacturing: a review. JOM. 2020;72:2363–2377. doi:10.1007/s11837-020-04155-y
  • Tapia G, Elwany AH, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf. 2016;12:282–290. doi:10.1016/j.addma.2016.05.009
  • Tapia G, Khairallah S, Matthews M, et al. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int J Adv Manuf Technol. 2018;94:3591–3603. doi:10.1007/s00170-017-1045-z
  • Grace W, Tian Q, Guo S, et al. CIRP Annals - manufacturing technology A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition. CIRP Ann Manuf Technol. 2020;69:205–208. doi:10.1016/j.cirp.2020.04.049
  • Ren Y, Wang Q, Michaleris PP. A physics-informed two-level machine-learning model for predicting melt-pool size in laser powder bed fusion. J Dyn Syst Meas Control. 2021;143; doi:10.1115/1.4052245
  • Desai PS, Fred Higgs C. Spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning. Metals (Basel). 2019;9:1–15. doi:10.3390/met9111176
  • Du Y, Mukherjee T, DebRoy T. Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Appl Mater Today. 2021;24:101123. doi:10.1016/j.apmt.2021.101123
  • Du Y, Mukherjee T, Mitra P, et al. Machine learning based hierarchy of causative variables for tool failure in friction stir welding. Acta Mater. 2020;192:67–77. doi:10.1016/j.actamat.2020.03.047
  • Zobeiry N, Humfeld KD. Engineering applications of artificial intelligence A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Eng Appl Artif Intell. 2021;101:104232. doi:10.1016/j.engappai.2021.104232
  • Zhu Q, Liu Z, Yan J. Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech. 2021;67:619–635. doi:10.1007/s00466-020-01952-9
  • Kats D, Wang Z, Gan Z, et al. A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Comput Mater Sci. 2022;202:110958. doi:10.1016/j.commatsci.2021.110958
  • Herriott C, Spear AD. Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods. Comput Mater Sci. 2020;175:109599. doi:10.1016/j.commatsci.2020.109599
  • Wang Z, Liu P, Ji Y, et al. Uncertainty quantification in metallic additive manufacturing through physics-informed data-driven modeling. JOM. 2019;71:2625–2634. doi:10.1007/s11837-019-03555-z
  • Wang WY, Tang B, Lin D, et al. A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: insight into atomic and electronic building blocks. J Mater Res. 2020;35:872–889. doi:10.1557/jmr.2020.43
  • Dimiduk DM, Holm EA, Niezgoda SR. Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integr Mater Manuf Innovation. 2018;7:157–172. doi:10.1007/s40192-018-0117-8
  • Kouraytem N, Li X, Tan W, et al. Modeling process-structure-property relationships in metal additive manufacturing: a review on physics-driven versus data-driven approaches. J Phys Mater. 2021;4:032002. doi:10.1088/2515-7639/abca7b
  • Mies D, Marsden W, Warde S. Overview of additive manufacturing informatics: “a digital thread”. Integr Mater Manuf Innov. 2016;5:114–142. doi:10.1186/s40192-016-0050-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.