220
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive survey on the ant lion optimiser, variants and applications

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 511-562 | Received 28 Mar 2021, Accepted 18 Jun 2022, Published online: 11 Jul 2022

References

  • Ab Wahab, M. N., Nefti-Meziani, S., & Atyabi, A. (2015). A comprehensive review of swarm optimization algorithms. PloS one, 10(5), e0122827. https://doi.org/10.1371/journal.pone.0122827
  • Abduljabbar, D. A., Hashim, S. Z. M., & Sallehuddin, R. (2020). Nature-inspired optimization algorithms for community detection in complex networks: A review and future trends. Telecommunication Systems,74, 225–252. https://doi.org/10.1007/s11235-020-00733-2
  • Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8–22. https://doi.org/10.1016/j.swevo.2015.07.002
  • Abualigah, L. M. Q. (2019). Feature selection and enhanced krill herd algorithm for text document clustering. Springer.
  • Abualigah, L., Shehab, M., Alshinwan, M., Mirjalili, S., & Abd Elaziz, M. (2020). Ant lion optimizer: a comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering.28, 1397–1416, https://doi.org/10.1007/s11831-020-09420-6
  • Abualigah, L., Abd Elaziz, M., Hussien, A. G., Alsalibi, B., Jalali, S. M. J., & Gandomi, A. H. (2020). Lightning search algorithm: A comprehensive survey. Applied Intelligence (Dordrecht, Netherlands), 51, 2353–2376. https://doi.org/10.1007/s10489-020-01947-2
  • Abualigah, L., & Diabat, A. (2020). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing, 24, 205–223 https://doi.org/10.1007/s10586-020-03075-5
  • Abualigah, L. (2020a). Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Computing and Applications, 33, 2949–2972. https://doi.org/10.1007/s00521-020-05107-y
  • Abualigah, L. (2020b). Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Computing and Applications, 32, 12381–12401. https://doi.org/10.1007/s00521-020-04839-1
  • Abul’Wafa, A. R. (2019). Ant‐lion optimizer‐based multi‐objective optimal simultaneous allocation of distributed generations and synchronous condensers in distribution networks. International Transactions on Electrical Energy Systems, 29(3), e2755. https://doi.org/10.1002/etep.2755
  • Agharazi, H., Kolacinski, R. M., Theeranaew, W., & Loparo, K. A. (2019). A swarm intelligence-based approach to anomaly detection of dynamic systems. Swarm and Evolutionary Computation, 44, 806–827. https://doi.org/10.1016/j.swevo.2018.09.003
  • Alazemi, F. Z., & Hatata, A. Y. (2019). Ant lion optimizer for optimum economic dispatch considering demand response as a visual power plant. Electric Power Components and Systems, 47(6–7), 629–643. https://doi.org/10.1080/15325008.2019.1602799
  • Ali, E. S., Elazim, S. A., & Abdelaziz, A. Y. (2016). Ant lion optimization algorithm for renewable distributed generations. Energy, 116 Part–1 , 445–458. https://doi.org/10.1016/j.energy.2016.09.104
  • Ali, E. S., Elazim, S. A., & Abdelaziz, A. Y. (2018). Optimal allocation and sizing of renewable distributed generation using ant lion optimization algorithm. Electrical Engineering, 100(1), 99–109. https://doi.org/10.1007/s00202-016-0477-z
  • Amaireh, A. A., Al-Zoubi, A. S., & Dib, N. I. (2019). Sidelobe-level suppression for circular antenna array via new hybrid optimization algorithm based on antlion and grasshopper optimization algorithms. Progress In Electromagnetics Research, 93, 49–63. https://doi.org/10.2528/PIERC19040909
  • Amroune, M., Musirin, I., Bouktir, T., & Othman, M. M. (2017). The amalgamation of SVR and ANFIS models with synchronized phasor measurements for on-line voltage stability assessment. Energies, 10(11), 1693. https://doi.org/10.3390/en10111693
  • Anter, A. M., & Zhang, Z. (2019, October). E-health Parkinson disease diagnosis in smart home based on hybrid intelligence optimization model. In International Conference on Advanced Intelligent Systems and Informatics (pp. 156–165). Springer, Cham.
  • Arora, S., & Singh, S. (2017). An improved butterfly optimization algorithm with chaos. Journal of Intelligent & Fuzzy Systems, 32(1), 1079–1088. https://doi.org/10.3233/JIFS-16798
  • Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23(3), 715–734. https://doi.org/10.1007/s00500-018-3102-4
  • Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001
  • Assiri, A. S., Hussien, A. G., & Amin, M. (2020). Ant Lion Optimization: Variants, hybrids, and applications. IEEE Access, 8, 77746–77764. https://doi.org/10.1109/ACCESS.2020.2990338
  • Azizi, M., Ghasemi, S. A. M., Ejlali, R. G., & Talatahari, S. (2019). Optimum design of fuzzy controller using hybrid ant lion optimizer and jaya algorithm. Artificial Intelligence Review, 53, 1553–1584. https://doi.org/10.1007/s10462-019-09713-8
  • Barma, P. S., Dutta, J., & Mukherjee, A. (2019). A 2-opt guided discrete antlion optimization algorithm for multi-depot vehicle routing problem. Decision Making: Applications in Management and Engineering, 2(2), 112–125. https://doi.org/10.31181/dmame1902089b
  • Baş, E., & Ülker, E. (2020). A binary social spider algorithm for continuous optimization task. Soft Computing, 24, 12953–12979. https://doi.org/10.1007/s00500-020-04718-w
  • Berger-Tal, O., Nathan, J., Meron, E., & Saltz, D. (2014). The exploration-exploitation dilemma: A multidisciplinary framework. PloS one, 9(4), e95693. https://doi.org/10.1371/journal.pone.0095693
  • BoussaïD, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117. https://doi.org/10.1016/j.ins.2013.02.041
  • Bozorg-Haddad, O. (Ed.). (2018). Advanced optimization by nature-inspired algorithms. Springer.
  • Brezočnik, L., Fister, I., & Podgorelec, V. (2018). Swarm intelligence algorithms for feature selection: A review. Applied Sciences, 8(9), 1521. https://doi.org/10.3390/app8091521
  • Buch, H., & Trivedi, I. N. (2019). On the efficiency of metaheuristics for solving the optimal power flow. Neural Computing and Applications, 31(9), 5609–5627. https://doi.org/10.1007/s00521-018-3382-8
  • Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Qu, R. (2013). Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695–1724. https://doi.org/10.1057/jors.2013.71
  • Cao, W. D., Yan, C. P., Wu, D. J., & Tuo, J. B. (2017). A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing. The International Journal of Advanced Manufacturing Technology, 93(9–12), 4099–4110. https://doi.org/10.1007/s00170-017-0823-y
  • Chen, J., Cai, H., & Wang, W. (2018). A new metaheuristic algorithm: Car tracking optimization algorithm. Soft Computing, 22(12), 3857–3878. https://doi.org/10.1007/s00500-017-2845-7
  • Chen, C., & Yu, L. (2019). A hybrid ant lion optimizer with improved nelder–mead algorithm for structural damage detection by improving weighted trace lasso regularization. Advances in Structural Engineering, 23(3), 468–484. https://doi.org/10.1177/1369433219872434
  • Chopra, N., & Mehta, S. (2015, December). Multi-objective optimum generation scheduling using ant lion optimization. In 2015 annual IEEE India conference (INDICON) (pp. 1–6). IEEE. New Delhi India.
  • Christaline, J. A., Ramesh, R., & Vaishali, D. (2016). Bio-inspired computational algorithms for improved image steganalysis. Indian Journal of Science and Technology, 9(10), 1e10. https://doi.org/10.17485/ijst/2016/v9i10/88995
  • Christaline, A., Ramesh, R., Gomathy, C., & Vaishali, D. (2017). Bio inspired optimization for universal spatial image steganalysis. Journal of Computational Science, 21, 182–188. https://doi.org/10.1016/j.jocs.2017.06.014
  • Chu, S. C., Tsai, P. W., & Pan, J. S. (2006, August). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854–858). Springer, Berlin Heidelberg.
  • Coello, C. A. C., Brambila, S. G., Gamboa, J. F., Tapia, M. G. C., & Gómez, R. H. (2019). Evolutionary multiobjective optimization: Open research areas and some challenges lying ahead. Complex & Intelligent Systems, 6 (2) , 221–236. https://doi.org/10.1007/s40747-019-0113-4
  • Dalwinder, S., Birmohan, S., & Manpreet, K. (2019). Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer. Biocybernetics and Biomedical Engineering. 40(1), 337–351. https://doi.org/10.1016/j.bbe.2019.12.004
  • Darwish, A. (2018). Bio-inspired computing: algorithms review, deep analysis, and the scope of applications. Future Computing and Informatics Journal, 3(2), 231–246. https://doi.org/10.1016/j.fcij.2018.06.001
  • Davis, L. 1991. Handbook of Genetic Algorithms Search PubMed. Van Nostrand Reinhold.
  • Dhal, K. G., Das, A., Ray, S., Gálvez, J., & Das, S. (2019). Nature-inspired optimization algorithms and their application in multi-thresholding image segmentation. Archives of Computational Methods in Engineering, 27 (3) , 855–888. https://doi.org/10.1007/s11831-019-09334-y
  • Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014
  • Dhiman, G., & Kumar, V. (2018). Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems, 159, 20–50. https://doi.org/10.1016/j.knosys.2018.06.001
  • Ding, S. (2019). A novel discrete grey multivariable model and its application in forecasting the output value of China’s high-tech industries. Computers & Industrial Engineering, 127, 749–760. https://doi.org/10.1016/j.cie.2018.11.016
  • Dinkar, S. K., & Deep, K. (2017). Opposition based Laplacian ant lion optimizer. Journal of Computational Science, 23, 71–90. https://doi.org/10.1016/j.jocs.2017.10.007
  • Dinkar, S. K., & Deep, K. (2019a). Accelerated opposition-based antlion optimizer with application to order reduction of linear time-invariant systems. Arabian Journal for Science and Engineering, 44(3), 2213–2241. https://doi.org/10.1007/s13369-018-3370-4
  • Dinkar, S. K., & Deep, K. (2019b). Opposition-based antlion optimizer using Cauchy distribution and its application to data clustering problem. Neural Computing and Applications,32 (11) , 6967–6995. https://doi.org/10.1007/s00521-019-04095-y
  • Du, P., Wang, J., Guo, Z., & Yang, W. (2017). Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting. Energy Conversion and Management, 150, 90–107. https://doi.org/10.1016/j.enconman.2017.07.065
  • Dubey, R., Joshi, D., & Bansal, R. C. (2016). Optimization of solar photovoltaic plant and economic analysis. Electric Power Components and Systems, 44(18), 2025–2035. https://doi.org/10.1080/15325008.2016.1209706
  • Eberhart, R., & Kennedy, J. (1995, November). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). Citeseer. Perth: WA: Australia
  • Elaziz, M. A., Moemen, Y. S., Hassanien, A. E., & Xiong, S. (2018). Quantitative structure-activity relationship model for hcvns5b inhibitors based on an antlion optimizer-adaptive neuro-fuzzy inference system. Scientific Reports, 8(1), 1506. https://doi.org/10.1038/s41598-017-19122-y
  • Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary ant lion approaches for feature selection. Neurocomputing, 213, 54–65. https://doi.org/10.1016/j.neucom.2016.03.101
  • Emary, E., & Zawbaa, H. M. (2019). Feature selection via Lèvy Antlion optimization. Pattern Analysis and Applications, 22(3), 857–876. https://doi.org/10.1007/s10044-018-0695-2
  • Evangelin, L. N., & Fred, A. L. (2019). Reduced optimal feature based biometric authentication using MALO-MKSVM techniques. Multimedia Tools and Applications, 78(22), 31077–31100. https://doi.org/10.1007/s11042-019-07918-1
  • Farughi, H., Mostafayi, S., & Arkat, J. (2019). Healthcare districting optimization using gray wolf optimizer and ant lion optimizer algorithms (case study: South Khorasan Healthcare System in Iran). Journal of Optimization in Industrial Engineering, 12(1), 119–131. https://doi.org/10.22094/JOIE.2018.766.1489
  • Fathy, A., & Abdelaziz, A. Y. (2018). Single and multi-objective operation management of micro-grid using krill herd optimization and ant lion optimizer algorithms. International Journal of Energy and Environmental Engineering, 9(3), 257–271. https://doi.org/10.1007/s40095-018-0266-8
  • Fathy, A., & Kassem, A. M. (2019). Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine. ISA transactions, 87, 282–296. https://doi.org/10.1016/j.isatra.2018.11.035
  • Filali, W., Garoudja, E., Oussalah, S., Mekheldi, M., Sengouga, N., & Henini, M. (2019). A novel parameter identification approach for C–V–T characteristics of multi-quantum wells schottky diode using ant lion optimizer. Russian Microelectronics, 48(6), 428–434. https://doi.org/10.1134/S1063739719660028
  • Fister, I., Strnad, D., & Yang, X. S. (2015). Adaptation and hybridization in nature-inspired algorithms. In Iztok Fister Jr. Ed. Adaptation and hybridization in computational intelligence (pp. 3–50). Springer.
  • Formato, R. A. (2008). Central force optimization: A new nature inspired computational framework for multidimensional search and optimization. In Natalio Krasnogor, Giuseppe Nicosia, Mario Pavone, David Pelta, Eds. Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) (pp. 221–238). Springer.
  • Gajula, V., & Rajathy, R. (2019). An agile optimization algorithm for vitality management along with fusion of sustainable renewable resources in microgrid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(13), 1580–1598. https://doi.org/10.1080/15567036.2019.1604869
  • Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010
  • Gandomi, A. H., & Kashani, A. R. (2017). Construction cost minimization of shallow foundation using recent swarm intelligence techniques. IEEE Transactions on Industrial Informatics, 14(3), 1099–1106. https://doi.org/10.1109/TII.2017.2776132
  • Garaigordobil, A., Ansola, R., Santamaría, J., & de Bustos, I. F. (2018). A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing. Structural and Multidisciplinary Optimization, 58(5), 2003–2017. https://doi.org/10.1007/s00158-018-2010-7
  • Gautam, R., Kaur, P., & Sharma, M. (2019). A comprehensive review on nature inspired computing algorithms for the diagnosis of chronic disorders in human beings. Progress in Artificial Intelligence, 8 (4) , 401–424. https://doi.org/10.1007/s13748-019-00191-1
  • Ghafil, H. N., & Jármai, K. (2020). Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering applications. Applied Soft Computing, 93, 106392. https://doi.org/10.1016/j.asoc.2020.106392
  • Gharehchopogh, F. S., Shayanfar, H., & Gholizadeh, H. (2019). A comprehensive survey on symbiotic organisms search algorithms. Artificial Intelligence Review, 53 (3) , 2265–2312. https://doi.org/10.1007/s10462-019-09733-4
  • Gharehchopogh, F. S., & Gholizadeh, H. (2019). A comprehensive survey: whale optimization algorithm and its applications. Swarm and Evolutionary Computation, 48, 1–24. https://doi.org/10.1016/j.swevo.2019.03.004
  • Ghimatgar, H., Kazemi, K., Helfroush, M. S., & Aarabi, A. (2018). An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowledge-Based Systems, 159, 270–285. https://doi.org/10.1016/j.knosys.2018.06.025
  • Guo, J., Yan, D., Cao, H., & Jiang, Z. (2016). The point to point trajectory planning based on the ant lion optimiser. International Journal of Automation and Control, 10(2), 155–166. https://doi.org/10.1504/IJAAC.2016.076457
  • Guo, S., Zhao, H., & Zhao, H. (2017). A new hybrid wind power forecaster using the Beveridge-nelson decomposition method and a relevance vector machine optimized by the ant lion optimizer. Energies, 10(7), 922. https://doi.org/10.3390/en10070922
  • GUO, W. Y., LIU, K. X., Zhang, X., & Zhang, J. J. (2018). Antlion optimization algorithm based on quadratic interpolation. DEStech Transactions on Computer Science and Engineering 411–417 . cnai. https://doi.org/10.12783/dtcse/cnai2018/24190
  • Hadidian-Moghaddam, M. J., Arabi-Nowdeh, S., Bigdeli, M., & Azizian, D. (2018). A multi-objective optimal sizing and siting of distributed generation using ant lion optimization technique. Ain Shams Engineering Journal, 9(4), 2101–2109. https://doi.org/10.1016/j.asej.2017.03.001
  • Hamouda, E., El-Metwally, S., & Tarek, M. (2018). Ant lion optimization algorithm for kidney exchanges. PloS one, 13(5), e0196707. https://doi.org/10.1371/journal.pone.0196707
  • Hancer, E., & Karaboga, D. (2017). A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number. Swarm and Evolutionary Computation, 32, 49–67. https://doi.org/10.1016/j.swevo.2016.06.004
  • Hancer, E., Xue, B., & Zhang, M. (2018). Differential evolution for filter feature selection based on information theory and feature ranking. Knowledge-Based Systems, 140, 103–119. https://doi.org/10.1016/j.knosys.2017.10.028
  • Hansen, N., & Kern, S. (2004, September). Evaluating the CMA evolution strategy on multimodal test functions. In International Conference on Parallel Problem Solving from Nature (pp. 282–291). Springer, Berlin, Heidelberg.
  • Hatata, A. Y., & Hafez, A. A. (2019). Ant lion optimizer versus particle swarm and artificial immune system for economical and eco‐friendly power system operation. International Transactions on Electrical Energy Systems, 29(4), e2803. https://doi.org/10.1002/etep.2803
  • He, Y., & Wang, X. (2018). Group theory-based optimization algorithm for solving knapsack problems. Knowledge-Based Systems, 219, 104445. https://doi.org/10.1016/j.knosys.2018.07.045
  • Heidari, A. A., Faris, H., Mirjalili, S., Aljarah, I., & Mafarja, M. (2020). Ant lion optimizer: Theory, literature review, and application in multi-layer perceptron neural networks. In Seyedali Mirjalili, Jin Song Dong, Andrew Lewis, Eds. Nature-inspired optimizers (pp. 23–46). Springer.
  • Hellwig, M., & Beyer, H. G. (2019). Benchmarking evolutionary algorithms for single objective real-valued constrained optimization–a critical review. Swarm and Evolutionary Computation, 44, 927–944. https://doi.org/10.1016/j.swevo.2018.10.002
  • Hema, P., Rao, J. M., & Reddy, C. E. (2020). Machining of bio-implant materials using WEDM and optimization of process parameters. In M. S. Shunmugam, M. Kanthababu, Eds. Advances in unconventional machining and composites (pp. 397–411). Springer.
  • Herbadji, O., Slimani, L., & Bouktir, T. (2019). Optimal power flow with four conflicting objective functions using multi-objective ant lion algorithm: A case study of the Algerian electrical network. Iranian Journal of Electrical and Electronic Engineering, 15(1), 94–113. http://ijeee.iust.ac.ir/article-1-1302-en.html
  • Hu, H., Li, Y., Bai, Y., Zhang, J., & Liu, M. (2019). The improved antlion optimizer and artificial neural network for Chinese influenza prediction. Complexity, 2019, 1–12/ 1480392. https://doi.org/10.1155/2019/1480392
  • Hu, X., Yao, L., Zhang, Y., Meng, Z., & Sun, Y. (2019). Optimizing structural parameters of carbon fiber braiding carriers based on antlion optimization algorithm. Journal of Industrial Textiles, 50(4), 460–482. https://doi.org/10.1177/1528083719831085
  • Hussain, K., Salleh, M. N. M., Cheng, S., & Shi, Y. (2019). On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Computing and Applications, 31(11), 7665–7683. https://doi.org/10.1007/s00521-018-3592-0
  • Hussien, A. G., Oliva, D., Houssein, E. H., Juan, A. A., & Yu, X. (2020). Binary whale optimization algorithm for dimensionality reduction. Mathematics, 8(10), 1821. https://doi.org/10.3390/math8101821
  • Hussien, A. G., Amin, M., Wang, M., Liang, G., Alsanad, A., Gumaei, A., & Chen, H. (2020). Crow search algorithm: Theory, recent advances, and applications. IEEE Access, 8, 173548–173565. https://doi.org/10.1109/ACCESS.2020.3024108
  • Ibrahim, I. A., Hossain, J., & Duck, B. C. (2019). An optimized offline random forests-based model for ultra-short-term prediction of PV characteristics. IEEE Transactions on Industrial Informatics, 16(1), 202–214. https://doi.org/10.1109/TII.2019.2916566
  • Jin, Y. (2011). Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 1(2), 61–70. https://doi.org/10.1016/j.swevo.2011.05.001
  • Jin, C., Ye, Z., Yan, L., Cao, Y., Zhang, A., Ma, L., … Hu, J. (2019, September). Image segmentation using fuzzy c-means optimized by ant lion optimization. In 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (Vol. 1, pp. 388–393). IEEE. Metz, France.
  • Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62–72. https://doi.org/10.1016/j.orp.2015.03.001
  • Kaabeche, A., & Bakelli, Y. (2019). Renewable hybrid system size optimization considering various electrochemical energy storage technologies. Energy Conversion and Management, 193, 162–175. https://doi.org/10.1016/j.enconman.2019.04.064
  • Kaidi, W., Khishe, M., & Mohammadi, M. (2022). Dynamic levy flight chimp optimization. Knowledge-Based Systems, 235, 107625. https://doi.org/10.1016/j.knosys.2021.107625
  • Kaleem, A. M., & Kokate, R. D. (2019). Prediction of pre-term groups from EHG signals using optimal multi-kernel SVM. Journal of Ambient Intelligence and Humanized Computing, 12, 3689–3703. https://doi.org/10.1007/s12652-019-01648-w
  • Kamboj, V. K., Bhadoria, A., & Bath, S. K. (2017). Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer. Neural Computing and Applications, 28(8), 2181–2192. https://doi.org/10.1007/s00521-015-2148-9
  • Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697. https://doi.org/10.1016/j.asoc.2007.05.007
  • Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3), 267–289. https://doi.org/10.1007/s00707-009-0270-4
  • Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization. Computers & Structures, 112, 283–294. https://doi.org/10.1016/j.compstruc.2012.09.003
  • Kaveh, A., & Vazirinia, Y. (2019). Smart-home electrical energy scheduling system using multi-objective ant lion optimizer and evidential reasoning. Scientia Iranica.
  • Kaveh, M., Chayjan, R. A., Taghinezhad, E., Gilandeh, Y. A., Younesi, A., & Sharabiani, V. R. (2019). Modeling of thermodynamic properties of carrot product using ALO, GWO, and WOA algorithms under multi-stage semi-industrial continuous belt dryer. Engineering with Computers, 35(3), 1045–1058. https://doi.org/10.1007/s00366-018-0650-2
  • Ke, Q., Zhang, J., Wei, W., Połap, D., Woźniak, M., Kośmider, L., & Damaševĭcius, R. (2019). A neuro-heuristic approach for recognition of lung diseases from X-ray images. Expert Systems with Applications, 126, 218–232. https://doi.org/10.1016/j.eswa.2019.01.060
  • Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338
  • Khisheh, M., Aghababaei, M., Saffari, A., & Goldani, A. (2016). AUV’s sensor selection by using ant-lion optimization algorithm and neural networks. Iranian Journal of Marine Science and Technology, 20(77), 59–69.
  • Kilic, H., Yuzgec, U., & Karakuzu, C. (2019). Improved antlion optimizer algorithm and its performance on neuro fuzzy inference system. Neural Network World, 29(4), 235–254. https://doi.org/10.14311/NNW.2019.29.016
  • Kilic, H., Yuzgec, U., & Karakuzu, C. (2020). A novel improved antlion optimizer algorithm and its comparative performance. Neural Computing and Applications, 32(8), 3803–3824. https://doi.org/10.1007/s00521-018-3871-9
  • Kılıç, H., & Yüzgeç, U. (2019a). Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling. Computers & Industrial Engineering, 132, 166–186. https://doi.org/10.1016/j.cie.2019.04.029
  • Kılıç, H., & Yüzgeç, U. (2019b). Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Engineering Science and Technology, an International Journal, 22(2), 673–691. https://doi.org/10.1016/j.jestch.2018.11.013
  • Kose, U. (2018). An ant-lion optimizer-trained artificial neural network system for chaotic electroencephalogram (EEG) prediction. Applied Sciences, 8(9), 1613. https://doi.org/10.3390/app8091613
  • Li, R., & Jin, Y. (2018). A wind speed interval prediction system based on multi-objective optimization for machine learning method. Applied Energy, 228, 2207–2220. https://doi.org/10.1016/j.apenergy.2018.07.032
  • Li, Y., Feng, B., Li, G., Qi, J., Zhao, D., & Mu, Y. (2018). Optimal distributed generation planning in active distribution networks considering integration of energy storage. Applied Energy, 210, 1073–1081. https://doi.org/10.1016/j.apenergy.2017.08.008
  • Li, L. L., Zhang, X. B., Tseng, M. L., & Zhou, Y. T. (2019). Optimal scale Gaussian process regression model in insulated gate bipolar transistor remaining life prediction. Applied Soft Computing, 78, 261–273. https://doi.org/10.1016/j.asoc.2019.02.035
  • Li, Z., Cao, Y., Dai, L. V., Yang, X., & Nguyen, T. T. (2019). Finding solutions for optimal reactive power dispatch problem by a novel improved antlion optimization algorithm. Energies, 12(15), 2968. https://doi.org/10.3390/en12152968
  • Liu, W., Moayedi, H., Nguyen, H., Lyu, Z., & Bui, D. T. (2019). Proposing two new metaheuristic algorithms of ALO-MLP and SHO-MLP in predicting bearing capacity of circular footing located on horizontal multilayer soil. Engineering with Computers, 37 (2) , 1537–1547. https://doi.org/10.1007/s00366-019-00897-9
  • Lynn, N., Ali, M. Z., & Suganthan, P. N. (2018). Population topologies for particle swarm optimization and differential evolution. Swarm and Evolutionary Computation, 39, 24–35. https://doi.org/10.1016/j.swevo.2017.11.002
  • Mafarja, M., Eleyan, D., Abdullah, S., & Mirjalili, S. (2017, July). S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. In Proceedings of the international conference on future networks and distributed systems (p. 21). ACM. Cambridge, United Kingdom
  • Mafarja, M. M., & Mirjalili, S. (2019). Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection. Soft Computing, 23(15), 6249–6265. https://doi.org/10.1007/s00500-018-3282-y
  • Mageshkumar, C., Karthik, S., & Arunachalam, V. P. (2019). Hybrid metaheuristic algorithm for improving the efficiency of data clustering. Cluster Computing, 22(1), 435–442. https://doi.org/10.1007/s10586-018-2242-8
  • Mahanta, G. B., Rout, A. V. L. D. B., & Biswal, B. B. (2019). An improved multi-objective antlion optimization algorithm for the optimal design of the robotic gripper. Journal of Experimental & Theoretical Artificial Intelligence, 32(2), 309–338 https://doi.org/10.1080/0952813X.2019.1647565
  • Mahendran, K., & Prabha, S. U. (2019). Optimal control strategies for a hybrid renewable energy system: An ALANN/RNN technique. Soft Computing, 23 (24) , 13459–13475. https://doi.org/10.1007/s00500-019-03885-9
  • Majhi, S. K., & Biswal, S. (2018). Optimal cluster analysis using hybrid K-means and ant lion optimizer. Karbala International Journal of Modern Science, 4(4), 347–360. https://doi.org/10.1016/j.kijoms.2018.09.001
  • Manoharan, H., Srikrishna, S., Sivarajan, G., & Manoharan, A. (2018). Economical placement of PMUs considering observability and voltage stability using binary coded ant lion optimization. International Transactions on Electrical Energy Systems, 28(9), e2591. https://doi.org/10.1002/etep.2591
  • Manuel, R., & Emayavaramban, G. (2019). PALONN: parallel ant lion optimizer and artificial neural network for power flow control of the micro grid-connected system. IETE Journal of Research, 68(2), 1225–1242 https://doi.org/10.1080/03772063.2019.1644208
  • Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation, 33, 1–17. https://doi.org/10.1016/j.swevo.2016.12.005
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  • Mirjalili, S. (2015a). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based Systems, 89, 228–249. https://doi.org/10.1016/j.knosys.2015.07.006
  • Mirjalili, S. (2015b). The ant lion optimizer. Advances in Engineering Software, 83, 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010
  • Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073. https://doi.org/10.1007/s00521-015-1920-1
  • Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79–95. https://doi.org/10.1007/s10489-016-0825-8
  • Moayedi, H., Tien Bui, D., Anastasios, D., & Kalantar, B. (2019). Spotted hyena optimizer and ant lion optimization in predicting the shear strength of soil. Applied Sciences, 9(22), 4738. https://doi.org/10.3390/app9224738
  • Mosbah, M., Arif, S., Mohammedi, R. D., & Zine, R. (2018, October). Optimal Algerian distribution network reconfiguration using antlion algorithm for active power losses. In 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS) (pp. 1–6). IEEE. Tebessa, Algeria.
  • Mostafa, A., Houseni, M., Allam, N., Hassanien, A. E., Hefny, H., & Tsai, P. W. (2016, November). Antlion optimization based segmentation for MRI liver images. In International Conference on Genetic and Evolutionary Computing (pp. 265–272). Springer, Cham.
  • Mouassa, S., Bouktir, T., & Salhi, A. (2017). Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Engineering Science and Technology, an International Journal, 20(3), 885–895. https://doi.org/10.1016/j.jestch.2017.03.006
  • Mousavifard, R., Abolghasemzadeh, M., Razmjooy, N., & Alizadeh, Y. (2019). Optimal design of functionally graded steels using multi-objective ant lion optimizer. The 27th Annual International Conference of Iranian Society of Mechanical Engineers-ISME2019, Tehran, Iran.
  • Newman, D., & Newman, D. (2007). UCI machine learning repository. International Journal of Urology: Official Journal of the Japanese Urological Association, 14(9), 862–864. https://doi.org/10.1111/j.1442-2042.2007.01827.x
  • Oliva, D., Hinojosa, S., Elaziz, M. A., & Ortega-Sánchez, N. (2018). Context based image segmentation using antlion optimization and sine cosine algorithm. Multimedia Tools and Applications, 77(19), 25761–25797. https://doi.org/10.1007/s11042-018-5815-x
  • Panwar, L. K., Reddy, S., Verma, A., Panigrahi, B. K., & Kumar, R. (2018). Binary grey wolf optimizer for large scale unit commitment problem. Swarm and Evolutionary Computation, 38, 251–266. https://doi.org/10.1016/j.swevo.2017.08.002
  • Parvathi, P., & Rajeswari, R. (2016, October). A hybrid FCM-ALO based technique for image segmentation. In 2016 IEEE international conference on advances in computer applications (ICACA) (pp. 342–345). IEEE. Coimbatore, India.
  • Pathak, V. K., & Srivastava, A. K. (2020). A novel upgraded bat algorithm based on cuckoo search and Sugeno inertia weight for large scale and constrained engineering design optimization problems. Engineering with Computers, 38, 1731–1758. https://doi.org/10.1007/s00366-020-01127-3
  • Pati, P. R., & Satpathy, M. P. (2019). Investigation on red brick dust filled epoxy composites using ant lion optimization approach. Polymer Composites, 40(10), 3877–3885. https://doi.org/10.1002/pc.25246
  • Petrovic, A., Delibasic, B., Filipovic, J., Petrovic, A., & Lomovic, M. (2018). Thermoeconomic and environmental optimization of geothermal water desalination plant with ejector refrigeration system. Energy Conversion and Management, 178, 65–77. https://doi.org/10.1016/j.enconman.2018.10.035
  • Petrović, M., Petronijević, J., Mitić, M., Vuković, N., Miljković, Z., & Babić, B. (2016). The ant lion optimization algorithm for integrated process planning and scheduling. In Cristian Vasile Doicin, Nicolae Ionescu, Tom Savu, Eduard Niţu, Eds. Applied mechanics and materials (Vol. 834, pp. 187–192)., Trans Tech Publications Ltd.
  • Pradhan, R., Majhi, S. K., & Pati, B. B. (2018). Design of PID controller for automatic voltage regulator system using ant lion optimizer. World Journal of Engineering, 15(3), 373–387. https://doi.org/10.1108/WJE-05-2017-0102
  • Preetha, P. S., & Kusagur, A. (2020). Implementation of ant-lion optimization algorithm in energy management problem and comparison. In Suresh Chandra Satapathy, K. Srujan Raju, K. Shyamala, D. Rama Krishna, Margarita N. Favorskaya, Eds. Advances in decision sciences, image processing, security and computer vision (pp. 462–469). Springer.
  • Premkumar, K., Manikandan, B. V., & Kumar, C. A. (2017). Antlion algorithm optimized fuzzy PID supervised on-line recurrent fuzzy neural network based controller for brushless DC motor. Electric Power Components and Systems, 45(20), 2304–2317. https://doi.org/10.1080/15325008.2017.1402395
  • Qin, J. (2009, November). A new optimization algorithm and its application—Key cutting algorithm. In 2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009) (pp. 1537–1541). IEEE. Nanjing, China
  • Qu, B. Y., Zhu, Y. S., Jiao, Y. C., Wu, M. Y., Suganthan, P. N., & Liang, J. J. (2018). A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm and Evolutionary Computation, 38, 1–11. https://doi.org/10.1016/j.swevo.2017.06.002
  • Radha, J., Subramanian, S., Ganesan, S., & Abirami, M. (2016). Best complex power settings using ant lion optimizer for optimal power flow problem. IUP Journal of Electrical & Electronics Engineering, 9(3), 7–31. https://ssrn.com/abstract=2961130
  • Rajan, A., Jeevan, K., & Malakar, T. (2017). Weighted elitism based Ant Lion Optimizer to solve optimum VAr planning problem. Applied Soft Computing, 55, 352–370. https://doi.org/10.1016/j.asoc.2017.02.010
  • Rani, R. R., & Ramyachitra, D. (2020). Antlion optimization algorithm for pairwise structural alignment with bi-objective functions. Neural Computing and Applications, 32, 7079–7096. https://doi.org/10.1007/s00521-019-04176-y
  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
  • Rayyam, M., & Zazi, M. (2019). A novel metaheuristic model-based approach for accurate online broken bar fault diagnosis in induction motor using unscented Kalman filter and ant lion optimizer. Transactions of the Institute of Measurement and Control, 42(8), 1537–1546. https://doi.org/10.1177/0142331219892142
  • Reddy, P., Reddy, V. V., & Manohar, T. G. (2018). Ant lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems. Journal of Electrical Systems and Information Technology, 5(3), 663–680. https://doi.org/10.1016/j.jesit.2017.06.001
  • Reddy, M. P. K., & Babu, M. R. (2019). A hybrid cluster head selection model for Internet of Things.&nbsp. Cluster Computing, &nbsp, 22(6), 13095–13107. https://doi.org/10.1007/s10586-017-1261-1
  • Ren, B., & Zhong, W. (2011). Multi-objective optimization using chaos based PSO. Information. Technology Journal,&nbsp, 10(10), 1908–1916. https://scialert.net/abstract/?doi=itj.2011.1908.1916
  • Rizk-Allah, R. M. (2018). Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems.&nbsp. Journal of Computational Design and Engineering,&nbsp, 5(2), 249–273. https://doi.org/10.1016/j.jcde.2017.08.002
  • Rout, A., Mahanta, G. B., Bbvl, D., & Biswal, B. B. (2020). Kinematic and dynamic optimal trajectory planning of industrial robot using improved multi-objective ant lion optimizer. Journal of the Institution of Engineers (India): Series, C(101), 559–569. https://doi.org/10.1007/s40032-020-00557-8
  • Roy, K., Mandal, K. K., & Mandal, A. C. (2019). Ant-Lion Optimizer algorithm and recurrent neural network for energy management of micro grid connected system. Energy, 167, 402–416. https://doi.org/10.1016/j.energy.2018.10.153
  • Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026
  • Saxena, P., & Kothari, A. (2016). Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays. AEU-International Journal of Electronics and Communications, 70(9), 1339–1349. https://doi.org/10.1016/j.aeue.2016.07.008
  • Scharf, I., & Ovadia, O. (2006). Factors influencing site abandonment and site selection in a sit-and-wait predator: A review of pit-building antlion larvae. Journal of Insect Behavior, 19(2), 197–218. https://doi.org/10.1007/s10905-006-9017-4
  • Scharf, I., Subach, A., & Ovadia, O. (2008). Foraging behaviour and habitat selection in pit-building antlion larvae in constant light or dark conditions. Animal Behaviour, 76(6), 2049–2057. https://doi.org/10.1016/j.anbehav.2008.08.023
  • Sekhar, V., & Ravi, K. (2019). Low-voltage ride-through capability enhancement of wind energy conversion system using an ant-lion recurrent neural network controller. Measurement and Control, 52(7–8), 1048–1062. https://doi.org/10.1177/0020294019858102
  • Šenkeřík, R., Zelinka, I., Pluhacek, M., Viktorin, A., Janostik, J., & Oplatkova, Z. K. (2018). Randomization and complex networks for meta-heuristic algorithms. In Obdulia Pichardo-Lagunas, and Sabino Miranda-Jiménez, Eds. Evolutionary algorithms, swarm dynamics and complex networks (pp. 177–194). Springer.
  • Shahinzadeh, H., Moradi, J., Gharehpetian, G. B., Fathi, S. H., & Abedi, M. (2018, November). Green power island, a blue battery concept for energy management of high penetration of renewable energy sources with techno-economic and environmental considerations. In 2018 Smart Grid Conference (SGC) (pp. 1–9). IEEE. Sanandaj, Iran.
  • Shanmugam, C., & Sekaran, E. C. (2019). IRT image segmentation and enhancement using FCM-MALO approach. Infrared Physics & Technology, 97, 187–196. https://doi.org/10.1016/j.infrared.2018.12.032
  • Sharma, R., & Saha, A. (2019). Ant Lion optimizer for state based object oriented testing. Journal of Information and Optimization Sciences, 40(2), 219–232. https://doi.org/10.1080/02522667.2019.1578085
  • Shayanfar, H., & Gharehchopogh, F. S. (2018). Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems. Applied Soft Computing, 71, 728–746. https://doi.org/10.1016/j.asoc.2018.07.033
  • Siarry, P., Idoumghar, L., & Lepagnot, J. (2016). Swarm intelligence based optimization. Springer International Publishing AG.
  • Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713. https://doi.org/10.1109/TEVC.2008.919004
  • Singh, P. R., Elaziz, M. A., & Xiong, S. (2018). Modified spider monkey optimization based on Nelder–Mead method for global optimization. Expert Systems with Applications, 110, 264–289. https://doi.org/10.1016/j.eswa.2018.05.040
  • Singh, D., & Singh, B. (2019). Hybridization of feature selection and feature weighting for high dimensional data. Applied Intelligence, 49(4), 1580–1596. https://doi.org/10.1007/s10489-018-1348-2
  • Singh, R. K., Gangwar, S., Singh, D. K., & Pathak, V. K. (2019). A novel hybridization of artificial neural network and moth-flame optimization (ANN–MFO) for multi-objective optimization in magnetic abrasive finishing of aluminium 6060. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(6), 270. https://doi.org/10.1007/s40430-019-1778-8
  • Sita, H., Umapathi Reddy, P., & Kiranmayi, R. (2019). Optimal location and sizing of UPFC for optimal power flow in deregulated power system using hybrid algorithm. International Journal of Ambient Energy, 43(1), 1413–1419. https://doi.org/10.1080/01430750.2019.1707116
  • Soolaki, M., & Arkat, J. (2018). Incorporating dynamic cellular manufacturing into strategic supply chain design. The International Journal of Advanced Manufacturing Technology, 95(5–8), 2429–2447. https://doi.org/10.1007/s00170-017-1346-2
  • Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328
  • Subhashini, K. R., & Satapathy, J. K. (2017). Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis. Applied Soft Computing, 59, 153–173. https://doi.org/10.1016/j.asoc.2017.05.007
  • Suvitha, S., & Mathana, J. M. (2019). A novel automated MOALO algorithm aided RF low‐noise amplifier design for wireless applications. Concurrency and Computation: Practice and Experience, 31(14), e4915. https://doi.org/10.1002/cpe.4915
  • Talatahari, S. (2016). Optimum design of skeletal structures using ant lion optimizer. International Journal of Optimization in Civil Engineering, 6(1), 13–25. http://ijoce.iust.ac.ir/article-1-235-fa.html
  • Tan, Y., & Zhu, Y. (2010, June). Fireworks algorithm for optimization. In International conference in swarm intelligence (pp. 355–364). Springer, Berlin, Heidelberg.
  • Thakkar, A., & Lohiya, R. (2020). Role of swarm and evolutionary algorithms for intrusion detection system: A survey. Swarm and Evolutionary Computation, 53, 100631. https://doi.org/10.1016/j.swevo.2019.100631
  • Tharwat, A., & Hassanien, A. E. (2018). Chaotic antlion algorithm for parameter optimization of support vector machine. Applied Intelligence, 48(3), 670–686. https://doi.org/10.1007/s10489-017-0994-0
  • Tian, T., Liu, C., Guo, Q., Yuan, Y., Li, W., & Yan, Q. (2018). An improved ant lion optimization algorithm and its application in hydraulic turbine governing system parameter identification. Energies, 11(1), 95. https://doi.org/10.3390/en11010095
  • Tikhamarine, Y., Malik, A., Kumar, A., Souag-Gamane, D., & Kisi, O. (2019). Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches. Hydrological Sciences Journal, 64(15), 1824–1842. https://doi.org/10.1080/02626667.2019.1678750
  • Toz, M. (2019). An improved form of the ant lion optimization algorithm for image clustering problems. Turkish Journal of Electrical Engineering & Computer Sciences, 27(2), 1445–1460. https://doi.org/10.3906/elk-1703-240
  • Trivedi, I. N., Jangir, P., & Parmar, S. A. (2016). Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer. Cogent Engineering, 3(1), 1208942. https://doi.org/10.1080/23311916.2016.1208942
  • Ulker, E., & Tongur, V. (2017). Migrating birds optimization (MBO) algorithm to solve knapsack problem. Procedia Computer Science, 111, 71–76. https://doi.org/10.1016/j.procs.2017.06.012
  • Umamaheswari, E., Ganesan, S., Abirami, M., & Subramanian, S. (2017). Cost effective integrated maintenance scheduling in power systems using ant lion optimizer. Energy Procedia, 117, 501–508. https://doi.org/10.1016/j.egypro.2017.05.176
  • Van, T. P., Snášel, V., & Nguyen, T. T. (2020). Antlion optimization algorithm for optimal non-smooth economic load dispatch. International Journal of Electrical & Computer Engineering, 10(2), 1187–1199. http://doi.org/10.11591/ijece.v10i2.pp1187-1199
  • Venkataraman, N. L., Kumar, R., & Shakeel, P. M. (2019). Ant lion optimized bufferless routing in the design of low power application specific network on chip. Circuits, Systems, and Signal Processing, 39, 961–976. https://doi.org/10.1007/s00034-019-01065-6
  • Venkataraman, N. L., & Kumar, R. (2019). Design and analysis of application specific network on chip for reliable custom topology. Computer Networks, 158, 69–76. https://doi.org/10.1016/j.comnet.2019.03.014
  • Verma, S., & Mukherjee, V. (2016). Optimal real power rescheduling of generators for congestion management using a novel ant lion optimiser. IET Generation, Transmission & Distribution, 10(10), 2548–2561. https://doi.org/10.1049/iet-gtd.2015.1555
  • Vinothkumar, T., & Deeba, K. (2020). Hybrid wind speed prediction model based on recurrent long short-term memory neural network and support vector machine models. Soft Computing, 24, 5345–5355. https://doi.org/10.1007/s00500-019-04292-w
  • Wang, J., Du, P., Lu, H., Yang, W., & Niu, T. (2018). An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting. Applied Soft Computing, 72, 321–337. https://doi.org/10.1016/j.asoc.2018.07.022
  • Wang, J., Bai, L., Wang, S., & Wang, C. (2019). Research and application of the hybrid forecasting model based on secondary denoising and multi-objective optimization for air pollution early warning system. Journal of Cleaner Production, 234, 54–70. https://doi.org/10.1016/j.jclepro.2019.06.201
  • Wang, M., Wu, C., Wang, L., Xiang, D., & Huang, X. (2019). A feature selection approach for hyperspectral image based on modified ant lion optimizer. Knowledge-Based Systems, 168, 39–48. https://doi.org/10.1016/j.knosys.2018.12.031
  • Wang, M., Gao, L., Huang, X., Jiang, Y., & Gao, X. (2019). A texture classification approach based on the integrated optimization for parameters and features of Gabor filter via hybrid ant lion optimizer. Applied Sciences, 9(11), 2173. https://doi.org/10.3390/app9112173
  • Wang, J., Khishe, M., Kaveh, M., & Mohammadi, H. (2021). Binary Chimp Optimization Algorithm (BChOA): A new binary meta-heuristic for solving optimization problems. Cognitive Computation, 13(5), 1297–1316. https://doi.org/10.1007/s12559-021-09933-7
  • Wedyan, A., Whalley, J., & Narayanan, A. (2017). Hydrological cycle algorithm for continuous optimization problems. Journal of Optimization, 2017, 1–25/ 3828420. https://doi.org/10.1155/2017/3828420
  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893
  • Wu, Y. K., Chang, H. Y., & Chang, S. M. (2017). Analysis and comparison for the unit commitment problem in a large-scale power system by using three meta-heuristic algorithms. Energy Procedia, 141, 423–427. https://doi.org/10.1016/j.egypro.2017.11.054
  • Wu, Z., Yu, D., & Kang, X. (2017). Parameter identification of photovoltaic cell model based on improved ant lion optimizer. Energy Conversion and Management, 151, 107–115. https://doi.org/10.1016/j.enconman.2017.08.088
  • Wu, G., Mallipeddi, R., & Suganthan, P. N. (2019). Ensemble strategies for population-based optimization algorithms–A survey. Swarm and Evolutionary Computation, 44, 695–711. https://doi.org/10.1016/j.swevo.2018.08.015
  • Yang, X. S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343. https://doi.org/10.48550/arXiv.1005.2908
  • Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Juan R. González, David Alejandro Pelta, Carlos Cruz, Germán Terrazas, Natalio Krasnogor, Eds. Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65–74). Springer.
  • Yang, X. S. (2014). Swarm intelligence based algorithms: A critical analysis. Evolutionary Intelligence, 7(1), 17–28. https://doi.org/10.1007/s12065-013-0102-2
  • Yang, X. S., Deb, S., & Fong, S. (2014). Metaheuristic algorithms: Optimal balance of intensification and diversification. Applied Mathematics & Information Sciences, 8(3), 977. https://doi.org/10.12785/amis/080306
  • Yang, D., Miao, J., Zhang, F., Tao, J., Wang, G., & Shen, Y. (2019). Bearing fault diagnosis using a support vector machine optimized by an improved ant lion optimizer. Shock and Vibration, 2019, 1–20. https://doi.org/10.1155/2019/9303676
  • Yao, P., & Wang, H. (2017). Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle. Soft Computing, 21(18), 5475–5488. https://doi.org/10.1007/s00500-016-2138-6
  • Yogarajan, G., & Revathi, T. (2018). Improved cluster based data gathering using ant lion optimization in wireless sensor networks. Wireless Personal Communications, 98(3), 2711–2731. https://doi.org/10.1007/s11277-017-4996-3
  • Yousri, D., AbdelAty, A. M., Radwan, A. G., Elwakil, A. S., & Psychalinos, C. (2019). Comprehensive comparison based on meta-heuristic algorithms for approximation of the fractional-order Laplacian sα as a weighted sum of first-order high-pass filters. Microelectronics Journal, 87, 110–120. https://doi.org/10.1016/j.mejo.2019.03.012
  • Yuan, X., Chen, C., Lei, X., Yuan, Y., & Adnan, R. M. (2018). Monthly runoff forecasting based on LSTM–ALO model. Stochastic Environmental Research and Risk Assessment, 32(8), 2199–2212. https://doi.org/10.1007/s00477-018-1560-y
  • Zawbaa, H. M., Emary, E., & Grosan, C. (2016). Feature selection via chaotic antlion optimization. PloS one, 11(3), e0150652. https://doi.org/10.1371/journal.pone.0150652
  • Zawbaa, H. M., Emary, E., Grosan, C., & Snasel, V. (2018). Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach. Swarm and Evolutionary Computation, 42, 29–42. https://doi.org/10.1016/j.swevo.2018.02.021
  • Zhao, S., Gao, L., Yu, D., & Tu, J. (2016). Ant lion optimizer with chaotic investigation mechanism for optimizing SVM parameters. Journal of Frontiers of Computer Science and Technology, 10(5), 722–731. http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.1506093
  • Zheng, L., Wang, Z., Zhao, Z., Wang, J., & Du, W. (2019). Research of bearing fault diagnosis method based on multi-layer extreme learning machine optimized by novel ant lion algorithm. IEEE Access, 7, 89845–89856. https://doi.org/10.1109/ACCESS.2019.2926348
  • Zhenxing, Z. H. A. N. G., Rennong, Y. A. N. G., Huanyu, L. I., Yuhuan, F. A. N. G., Zhenyu, H. U. A. N. G., & Ying, Z. H. A. N. G. (2019). Antlion optimizer algorithm based on chaos search and its application. Journal of Systems Engineering and Electronics, 30(2), 352–365. https://doi.org/10.21629/JSEE.2019.02.14
  • Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32–49. https://doi.org/10.1016/j.swevo.2011.03.001
  • Zhu, J., Chen, H., Wu, G., Chen, L., & Li, H. (2019). Pressure point driven evolutionary algorithm for many-objective optimization. Swarm and Evolutionary Computation, 51, 100599. https://doi.org/10.1016/j.swevo.2019.100599

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.