831
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The node importance evaluation method based on graph convolution in multilayer heterogeneous networks

, &
Article: 2229964 | Received 08 Dec 2022, Accepted 22 Jun 2023, Published online: 15 Jul 2023

References

  • Avram, F., Freddi, L., & Goreac, D. (2022). Optimal control of a SIR epidemic with ICU constraints and target objectives. Applied Mathematics and Computation, 418, Article 126816. https://doi.org/10.1016/j.amc.2021.126816
  • Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Romance, M., & Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122. https://doi.org/10.1016/j.physrep.2014.07.001
  • Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3), 191–201. https://doi.org/10.1016/S0378-8733(01)00038-7
  • Chen, H., Yin, H., Wang, W., Wang, H., Nguyen, Q. V. H., & Li, X. (2018). PME: Projected metric embedding on heterogeneous networks for link prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1177–1186).
  • Chen, M., Huang, C., Xia, L., Li, X., & Zhang, M. (2023). Heterogeneous graph contrastive learning for recommendation. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining (pp. 544–552).
  • Contisciani, M., Power, E. A., & De Bacco, C. (2020). Community detection with node attributes in multilayer networks. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-72626-y
  • Cun, X., & Zhou, L. (2021). Influence maximization based on adjacency entropy in heterogeneous information networks. Application Research of Computers, 38(11), 3304–3309. https://doi.org/10.19734/j.issn.1001-3695.2021.04.0138
  • Fan, C., Zeng, L., Sun, Y., and Liu, Y. (2020). Finding key players in complex networks through deep reinforcement learning. Nature Machine Intelligence, 2(6), 317–324. https://doi.org/10.1038/s42256-020-0177-2
  • Freeman, L. C. (2002). Centrality in social networks: Conceptual clarification. Social Networks, 24(3), 238–263. https://doi.org/10.1016/S0378-8733(02)00018-4
  • Huang, R., Chen, Z., He, J., & Chu, X. (2022). Dynamic heterogeneous user generated contents-driven relation assessment via graph representation learning. Sensors, 22(4), 1402. https://doi.org/10.3390/s22041402
  • Huang, T., Zhou, C., Zhang, R. X., Wang, Z., Li, K., & Qiu, M. (2022). Learning tailored adaptive bitrate algorithms to heterogeneous network conditions: A domain-specific priors and meta-reinforcement learning approach. IEEE Journal on Selected Areas in Communications, 40(8), 2485–2503. https://doi.org/10.1109/JSAC.2022.3180804
  • Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888–893. https://doi.org/10.1038/nphys1746
  • Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271. https://doi.org/10.1093/comnet/cnu016
  • Li, C., Zhang, Y., & Li, X. (2021). Epidemic threshold in temporal multiplex networks with individual layer preference. IEEE Transactions on Network Science and Engineering, 8(1), 814–824. https://doi.org/10.1109/TNSE.2021.3055352
  • Liang, X., Ma, Y., Cheng, G., Fan, C., Yang, Y., & Liu, Z. (2022). Meta-path-based heterogeneous graph neural networks in academic network. International Journal of Machine Learning and Cybernetics, 13(6), 1553–1569. https://doi.org/10.1007/s13042-021-01465-8
  • Liu, C., Yin, H., Sun, Y., Wang, L., & Guo, X. (2022). A grade identification method of critical node in urban road network based on multi-attribute evaluation correction. Applied Sciences, 12(2), 813. https://doi.org/10.3390/app12020813
  • Liu, L., Hu, F., Niu, L., & Peng, T. (2019). Node influence based similarity measure method in heterogeneous network. Acta Electronica Sinica, 47(9), 1929–1936. https://doi.org/10.3969/j.issn.0372-2112.2019.09.023
  • Liu, X. Y., & He, D. B. (2020). Research on of competitive nonlinear dynamic information diffusion modeling in online social network. Chinese Journal of Computers, 43(10), 1842–1861. https://doi.org/10.11897/SP.J.1016.2020.01842
  • Liu, Z. J., Liang, Y., & Zhang, W. (2020). Heterogeneous network combined meta-path node importance analysis method. Journal of Chinese Computer Systems, 41(6), 1188–1194. https://doi.org/10.11896/j.issn.1000-5137.20200265
  • Luo, C., Guan, R., Wang, Z., Li, G., & Zhang, S. (2014). Hetpathmine: A novel transductive classification algorithm on heterogeneous information networks. In Proceedings of the 36th European Conference on IR Research (pp. 210–221).
  • Luo, H., Yan, G., Meng, Z., Junbo, B., Juncheng, L., & Ting, L. (2020). Identifying important nodes in multi-relational networks based on evidence theory. Chinese Journal of Computers, 43(12), 2398–2413. https://doi.org/10.11897/SP.J.1016.2020.02398
  • Molaei, S., Farahbakhsh, R., Salehi, M., & Crespi, N. (2020). Identifying influential nodes in heterogeneous networks. Expert Systems with Applications, 160, Article 113580. https://doi.org/10.1016/j.eswa.2020.113580
  • Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. https://doi.org/10.1063/1.4952955
  • Rahmede, C., Iacovacci, J., Arenas, A., & Bianconi, G. (2018). Centralities of nodes and influences of layers in large multiplex networks. Journal of Complex Networks, 6(5), 733–752. https://doi.org/10.1093/comnet/cnx050
  • Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581–603. https://doi.org/10.1007/BF02289527
  • Shi, C., Li, Y., Zhang, J., Sun, Y., & Yu, P. S. (2021). A survey of heterogeneous information networks analysis and applications. Chinese Journal of Computers, 33(2), 598–621. https://doi.org/10.13328/j.cnki.jos.000000
  • Shu, J., Yao, X., & Li, R. R. (2022). Node importance evaluation in multiplex heterogeneous networks based on graph embedding. Journal of Beijing University of Posts and Telecommunications, 45(4), 104–109. https://doi.org/10.13190/j.jbupt.2021-214
  • Sun, H., He, F., Huang, J., Sun, Y., Li, Y., Wang, C., He, L., Sun, Z., & Jia, X. (2020). Network embedding for community detection in attributed networks. ACM Transactions on Knowledge Discovery from Data, 14(3), 1–25. https://doi.org/10.1145/3385415
  • Sun, Y., Han, J., Yan, X., Yu, P. S., & Wu, T. (2011). Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 4(11), 992–1003. https://doi.org/10.14778/3402707.3402736
  • Tu, X., Jiang, G.-P., Song, Y., & Zhang, X. (2018). Novel multiplex PageRank in multilayer networks. IEEE Access, 6, 12530–12538. https://doi.org/10.1109/ACCESS.2018.2807778
  • Wan, L., Zhang, M., Li, X., Sun, L., Wang, X., & Liu, K. (2022). Identification of important nodes in multilayer heterogeneous networks incorporating multirelational information. IEEE Transactions on Computational Social Systems, 9(6), 1715–1724. https://doi.org/10.1109/TCSS.2022.3161305
  • Wang, D., Tian, F., & Wei, D. (2023). A new centrality ranking method for multilayer networks. Journal of Computational Science, 66, Article 101924. https://doi.org/10.1016/j.jocs.2022.101924
  • Wang, Z., Xia, C., Chen, Z., & Chen, G. (2021). Epidemic propagation with positive and negative preventive information in multiplex networks. IEEE Transactions on Cybernetics, 51(3), 1454–1462. https://doi.org/10.1109/TCYB.2019.2960605
  • Wu, M., He, S., Zhang, Y., Chen, J., Sun, Y., Liu, Y.-Y., Zhang, J., & Poor, H. V. (2019). A tensor-based framework for studying eigenvector multicentrality in multilayer networks. Proceedings of the National Academy of Sciences, 116(31), 15407–15413. https://doi.org/10.1073/pnas.1801378116
  • Yang, C., Xiao, Y., Zhang, Y., Sun, Y., & Han, J. (2022). Heterogeneous network representation learning: A unified framework with survey and benchmark. IEEE Transactions on Knowledge and Data Engineering, 34(10), 4854–4873. https://doi.org/10.1109/TKDE.2020.3045924
  • Yang, X., & Xiao, F. (2021). An improved gravity model to identify influential nodes in complex networks based on k-shell method. Knowledge-Based Systems, 227, Article 107198. https://doi.org/10.1016/j.knosys.2021.107198
  • Yang, Y., Guan, Z., Li, J., Zhao, W., Cui, J., & Wang, Q. (2021). Interpretable and efficient heterogeneous graph convolutional network. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3101356
  • Yang, Y., Zhou, L., Du, G., Zou, X., & Ding, H. (2021). Influence maximization based on network embedding in heterogeneous information networks. Transactions on Intelligent Systems, 16(4), 757–765. https://doi.org/10.11992/tis.202009047
  • Yang, Y., Zhou, L., Jin, Z., & Yang, J. (2019). Meta path-based information entropy for modeling social influence in heterogeneous information networks. In 2019 20th IEEE International Conference on Mobile Data Management (MDM) (pp. 557–562).
  • Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 793–803).
  • Zhao, J., Wen, Q., Sun, S., Wang, Z., Zhang, Y., & Liu, Z. (2021). Multi-view self-supervised heterogeneous graph embedding. In Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD (pp. 319–334).
  • Zhou, L., Wang, J., Wang, L., Chen, H., & Kong, B. (2022). Heterogeneous information network representation learning: A survey. Chinese Journal of Computers, 45(1), 160–189. https://doi.org/10.1189/7SP.J.1016.2022.00160
  • Zhu, Y., Xu, Y., Cui, H., Wang, S., Zhang, W., & Tang, J. (2022). Structure-enhanced heterogeneous graph contrastive learning. In Proceedings of the 2022 SIAM International Conference on Data Mining (pp. 82–90).