362
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reconstructing higher-resolution four-dimensional time-varying volumetric data

&
Article: 2289837 | Received 08 Aug 2023, Accepted 27 Nov 2023, Published online: 08 Dec 2023

References

  • Aldrich, G., Lukasczyk, J., Steptoe, M., Maciejewski, R., Leitte, H., & Hamann, B. (2016). Viscous fingers: A topological visual analytic approach. In IEEE visualization 2016 scientific visualization contest. Baltimore, Maryland.
  • Bai, Z. H., Tao, Y. B., & Lin, H. (2020). Time-varying volume visualization a survey. Journal of Visualization, 23(5), 745–761. https://doi.org/10.1007/s12650-020-00654-x
  • Begin, I., & Ferrie, F. P. (2007). PSF recovery from examples for blind super-resolution. In IEEE International conference on image processing (pp. 421–424). San Antonio, TX, USA.
  • Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S. W., Fidler, S., & Kreis, K. (2023). Align your latents: High-Resolution video synthesis with latent diffusion models. In IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 22563–22575). Vancouver Canada.
  • Cammarri, S., Salvetti, M. V., Buffoni, M., & Iollo, A. (2005). Simulation of the three-dimensional flow around a square cylinder between parallel walls at moderate Reynolds numbers. In XVII congresso di meccanica teorica ed applicata.
  • Chen, J. N., Lu, Y. Y., Yu, Q. H., Luo, X. D., Adeli, E., Wang, Y., & Zhou, Y. Y. (2021). TransUNet: Transformers make strong encoders for medical image segmentation. arXiv.
  • Chen, N. X., Zhang, Y., Zen, H. G., Weiss, R. J., Norouzi, M., & Chan, W. (2021). WaveGrad estimating gradients for waveform generation. In Proc. of international conference on learning representations (ICLR). Vienna, Austria.
  • Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronnerberger, O. (2016). 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Medical image computing and computer-assisted intervention (MICCAI) (pp. 424–432). Springer International Publishing.
  • Ding, Y., Zhang, C., Cao, M. S., Wang, Y. L., Chen, D. J., Zhang, N., & Z. G. Qin (2021). ToStaGAN: An end-to-end two-stage generative adversarial network for brain tumor segmentation. Neurocomputing, 462, 141–153. https://doi.org/10.1016/j.neucom.2021.07.066
  • Funck, W. V., Weinkauf, T., Theisel, H., & Seidel, H. P. (2008). Smoke surfaces: An interactive flow visualization technique inspired by real-World flow experiments. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2008), 14(6), 1396–1403. https://doi.org/10.1109/TVCG.2008.163http://tinoweinkauf.net/.
  • Gong, C. W., Jing, C. H., Chen, X. H., Pun, C. M., Huang, G. L., Saha, A., & Wang, S. Q. (2023). Generative AI for brain image computing and brain network computing: A review. Frontiers in Neuroscience, 17, 1203104. https://doi.org/10.3389/fnins.2023.1203104
  • Greenspan, H. (2008). Super-resolution in medical imaging. The Computer Journal, 52(1), 43–63. https://doi.org/10.1093/comjnl/bxm075
  • Gu, P. F., Han, J., Chen, D. Z., & Wang, C. L. (2022). Scalar2Vec: Translating scalar fields to vector fields via deep learning. In IEEE 15th pacific visualization symposium (pacificVis). Tsukuba, Japan.
  • Gu, Y. C., Zeng, Z. T., Chen, H. B., Wei, J., Zhang, Y. Q., Chen, B. H., & Lu, Y. (2020). MedSRGAN: Medical images super-resolution using generative adversarial networks. Multimedia Tools and Applications, 79(29-30), 21815–21840. https://doi.org/10.1007/s11042-020-08980-w
  • Guan, S., Khan, A. A., Sikdar, S., & Chitnis, P. V. (2019). Fully dense UNet for 2d dparse photoacoustic tomography artifact removal. IEEE Journal of Biomedical and Health Informatics, 24(2), 568–576. https://doi.org/10.1109/JBHI.6221020
  • Guo, L., Ye, S. J., Han, J., Zheng, H., Guo, H., Chen, D. Z., & Wang, C. L. (2020). SSR-VFD: Spatial super-resolution for vector field data analysis and visualization. In IEEE pacific visualization symposium. Tianjin, China.
  • Han, J., & Wang, C. L. (2020). TSR-TVD: Temporal super-resolution for time-varying data analysis and visualization. IEEE Transactions on Visualization and Computer Graphics, 26(1), 205–215.
  • Han, J., & Wang, C. L. (2022a). SSR-TVD: Spatial super-resolution for time-varying data analysis and visualization. IEEE Transactions on Visualization and Computer Graphics, 28(6), 2445–2456.
  • Han, J., & Wang, C. L. (2022b). TSR-VFD: Generating temporal super-resolution for unsteady vector field data. Computers and Graphics, 103, 168–179. https://doi.org/10.1016/j.cag.2022.02.001
  • Han, J., Zheng, H., Chen, D. Z., & Wang, C. L. (2022). STNet: An end-to-end generative framework for synthesizing spatiotemporal super-resolution volumes. IEEE Transactions on Visualization and Computer Graphics, 28(1), 270–280. https://doi.org/10.1109/TVCG.2021.3114815
  • Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., & Salimans, T. (2022). Cascaded diffusion models for high fidelity image generation. The Journal of Machine Learning Research, 23(1), 2249–2281.
  • Hu, M. S., Jiang, K., Liao, L., Xiao, J., Jiang, J. J., & Wang, Z. (2022). Spatial-Temporal space hand-in-hand: Spatial-Temporal video super-resolution via cycle-projected mutual learning. In IEEE/CVF conference on computer vision and pattern recognition (CVPR). New Orleans, Louisiana.
  • Hu, S. Y., Lei, B. Y., Wang, S. Q., Wang, Y., Feng, Z. G., & Shen, Y. Y. (2022). Bidirectional mapping generative adversarial networks for brain MR to PET synthesis. IEEE Transactions on Medical Imaging, 41(1), 145–157. https://doi.org/10.1109/TMI.2021.3107013
  • Huang, H. M., Lin, L. F., Tong, R. F., Hu, H. J., Zhang, Q. W., Iwamoto, Y., & Wu, J. (2020). UNet+: 3 a full-scale connected UNet for medical image segmentation Unet 3+: a full-scale connected unet for medical image segmentation. In IEEE international conference on acoustics, speech and signal processing (ICASSP).
  • Huang, Y. W., Shao, L., & Frangi, A. F. (2017). Simultaneous super-resolution and cross-modality synthesis of 3d medical images using weakly-supervised joint convolutional sparse coding. In IEEE conference on computer vision and pattern recognition (CVPR). Honolulu, HI, USA.
  • Ibehaz, N., & Rahman, M. S. (2020). MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121, 74–87. https://doi.org/10.1016/j.neunet.2019.08.025
  • Iglovikov, V., & Shvets, A. (2018). TernausNet: U-Net with VGG11 encoder pre-trained on imagenet for image segmentation. arXiv.
  • International CFD database (n.d.). 1. http://cfd.cineca.it/.
  • Jha, D., Riegler, M. A., Johansen, D., Halvorsen, P., & Johansen, H. D. (2020). DoubleU-Net: A deep convolutional neural network for medical image segmentation. arXiv.
  • Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen, D., Lange, T. D., Halvorsen, P., & Johansen, H. D. (2019). ResUNet++: an advanced architecture for medical image segmentation Resunet++: an advanced architecture for medical image segmentation. In IEEE international symposium on multimedia (ISM). Laguna Hills, California.
  • Jiang, K., Wang, Z. Y., Yi, P., & Jiang, J. J. (2020). Hierarchical dense recursive network for image super-resolution. Pattern Recognition, 107, 107475. https://doi.org/10.1016/j.patcog.2020.107475
  • Jiang, K., Wang, Z. Y., Yi, P., Wang, G. C., Gu, K., & Jiang, J. J. (2019). ATMFN: Adaptive-Threshold-Based multi-model fusion network for compressed face Hallucination. IEEE Transactions on Multimedia, 22(10), 2734–2747. https://doi.org/10.1109/TMM.6046
  • Jiang, K., Wang, Z. Y., Yi, P., Wang, G. C., Lu, T., & Jiang, J. J. (2019). Edge-Enhanced GAN for remote sensing image superresolution. IEEE Transactions on Geoscience and Remote Sensing, 57(8), 5799–5812. https://doi.org/10.1109/TGRS.36
  • Jo, Y., Oh, S., Kang, J., & Kim, S. J. (2018). Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In IEEE/CVF conference on computer vision and pattern recognition (CVPR). Salt Lake city, UT, USA.
  • Kim, B., Han, I., & Ye, J. C. (2022). DiffuseMorph: Unsupervised deformable image registration Using diffusion model. In European conference on computer vision (pp. 347–364). Tel Aviv, Israel.
  • Kong, L., Lian, C., Huang, D., Hu, Y., & Zhou, Q. (2021). Breaking the dilemma of medical image-to-image translation. Advances in Neural Information Processing Systems, 34, 1964–1978.
  • Lai, W. S., Huang, J. B., Ahuja, N., & Yang, M. H. (2017). Deep laplacian pyramid networks for fast and accurate superresolution. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 624–632). Honolulu, HI, USA.
  • Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., & Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of ieee conference on computer vision and pattern recognition (pp. 4681–4690). Honolulu, HI, USA.
  • Lekien, F., & Marsden, J. (2005). Tricubic interpolation in three dimensions. International Journal for Numerical Methods in Engineering, 63(3), 455–471. https://doi.org/10.1002/(ISSN)1097-0207
  • Lepcha, D. C., Goyal, B., Dogra, A., & Goyal, V. (2023). Image super-resolution: A comprehensive review, recent trends, challenges and applications. Information Fusion, 91, 230–260. https://doi.org/10.1016/j.inffus.2022.10.007
  • Li, S., He, F. X., Du, B., Zhang, L. F., Xu, Y. H., & Tao, D. C. (2019). Fast spatio-remporal residual network for video super-resolution. In IEEE/CVF conference on computer vision and pattern recognition (CVPR). Long Beach, CA, USA.
  • Li, Z., Yang, J. L., Liu, Z., Yang, X. M., Jeon, G., & Wu, W. (2019). Feedback network for image super-resolution. In IEEE/CVF conference on computer vision and pattern recognition (CVPR). Long Beach, CA, USA.
  • Lin, Z. N., Sekar, V., & Fanti, G. (2021). Why spectral normalization stabilizes GANs: Analysis and improvements. Advances in Neural Information Processing Systems, 34, 9625–9638. https://doi.org/10.48550/arXiv.2009.02773
  • Lou, A., Guan, S. Y., & Loew, M. (2021). DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation. In Medical imaging 2021: image processing (Vol. 11596, pp. 758–768). SPIE.
  • Luo, Y. M., Zhou, L. P., Zhan, B., Fei, Y. C., Zhou, J. L., & Wang, Y. (2022). Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis. Medical Image Analysis, 77, 102335. https://doi.org/10.1016/j.media.2021.102335
  • Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. In International conference for learning representations. Vancouver, BC, Canada.
  • Rasti, P., Uiboupin, T., Escalera, S., & Anbarjafari, G. (2016). Convolutional neural network super resolution for face recognition in surveillance monitoring. In International conference on articulated motion and deformable objects (pp. 175–184). Palma de Mallorca, Spain.
  • Reibman, A. R., Bell, R. M., & Gray, S. (2006). Quality assessment for super-resolution image enhancement. In IEEE international conference on image processing. Atlanta, GA, USA.
  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-Resolution image synthesis with latent diffusion models. In IEEE/CVF conference on computer vision and pattern recognition (CVPR). New Orleans, Louisiana.
  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention (MICCAI) (pp. 234–241). Munich, Germany.
  • Sajjadi, M., Vemulapalli, R., & Matthew, B. (2018). Frame-recurrent video super-resolution. In IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 6626–6634). Salt Lake city, UT, USA.
  • Shan, G. H., Tian, D., Xie, M. J., Liu, J., Wang, Y., & Chi, X. B. (2013). In-situ visualization for peta-scale scientific computation. Journal of Computer-Aided Design and Computer Graphics, 25(3), 286–293.
  • Song, T. A., Chowdhury, S. R., Yang, F., & Dutta, J. (2020). PET image super-resolution using generative adversarial networks. Neural Networks, 125, 83–91. https://doi.org/10.1016/j.neunet.2020.01.029
  • Tong, T., Li, G., Liu, X. J., & Gao, Q. Q. (2017). Image super-resolution using dense skip connections. In IEEE international conference on computer vision (ICCV) (pp. 4799–4807). Venice, Italy.
  • Valanarasu, J. M. J., Sindagi, V. A., Hacihaliloglu, I., & Patel, V. M. (2022). KiU-Net: overcomplete convolutional architectures for biomedical image and volumetric segmentation. IEEE Transactions on Medical Imaging, 41(4), 965–976. https://doi.org/10.1109/TMI.2021.3130469
  • Wang, S. Q., Chen, Z., You, S. R., Wang, B. C., Shen, Y. Y., & Lei, B. Y. (2022). Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Computing and Applications, 34(11), 8657–8669. https://doi.org/10.1007/s00521-021-06816-8
  • Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B. (2018). High-Resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the ieee conference on computer vision and pattern recognition (CVPR) (pp. 8798–8807). Salt Lake city, UT, USA.
  • Wang, T. H., Lei, Y., Fu, Y. B., Wynne, J. F., Curran, W. J., Liu, T., & Yang, X. F. (2021). A review on medical imaging synthesis using deep learning and its clinical applications. Journal of Applied Clinical Medical Physics, 22(1), 11–36. https://doi.org/10.1002/acm2.v22.1
  • Wang, Z. H., Chen, J., & Hoi, S. C. H. (2021). Deep learning for image super-resolution: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3365–3387. https://doi.org/10.1109/TPAMI.2020.2982166
  • Wurster, S. W., Guo, H. Q., Shen, H. W., Peterka, T., & Xu, J. Y. (2022). Deep hierarchical super resolution for scientific data. IEEE Transactions on Visualization and Computer Graphics, 29(12), 5483–5495.
  • Xiao, X., Lian, S., Luo, Z. M., & Li, S. Z. (2018). Weighted Res-UNet for high-quality retina vessel segmentation. In International conference on information technology in medicine and education (ITME) (pp. 327–331). IEEE.
  • You, S. R., Lei, B. Y., Wang, S. Q., Chui, C. K., Cheung, A. C., & Liu, Y. (2023). Fine perceptive GANs for brain MR image super-resolution in wavelet domain. IEEE Transactions on Neural Networks and Learning Systems, 34(11), 8802–8814.
  • Yuan, Q. Q., Zhang, L. P., & Shen, H. F. (2011). Multiframe super-resolution employing a spatially weighted total variation model. IEEE Transactions on Circuits and Systems for Video Technology, 22(3), 379–392. https://doi.org/10.1109/TCSVT.2011.2163447
  • Zamfir, E., Conde, M. V., & Timofte, R. (2023). Towards real-time 4K image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW) (pp. 1522–1532). Vancouver, Canada.
  • Zhang, D., He, J. Z., & Du, M. H. (2012). Morphable model space based face super-resolution reconstruction and recognition. Image and Vision Computing, 30(2), 100–108. https://doi.org/10.1016/j.imavis.2012.01.005
  • Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019). Self-attention generative adversarial networks. In Proceeding of the 36th International Conference on Machine Learning (Vol. 97, pp. 7354–7363). Long Beach, California, USA.
  • Zhang, H. Y., Zhang, L. P., & Shen, H. F. (2012). A super-resolution reconstruction algorithm for hyperspectral images. Signal Processing, 92(9), 2082–2096. https://doi.org/10.1016/j.sigpro.2012.01.020
  • Zhang, L. P., Zhang, H. Y., Shen, H. F., & Li, P. X. (2010). A super-resolution reconstruction algorithm for surveillance images. Signal Processing, 90(3), 848–859. https://doi.org/10.1016/j.sigpro.2009.09.002
  • Zhang, X. S., Jiang, J., & Peng, S. L. (2012). Commutability of blur and affine warping in super-resolution with application to joint estimation of triple-coupled variables. IEEE Transactions on Image Processing, 21(4), 1796–1808. https://doi.org/10.1109/TIP.2011.2174371
  • Zhang, Y. L., Li, K. P., Li, K., Wang, L. C., Zhong, B. N., & Fu, Y. (2018). Image super-resolution using very deep residual channel attention networks. In Proceedings of european conference on computer vision (pp. 294–310). Munich, Germany.
  • Zhou, F., Yang, W. M., & Liao, Q. M. (2012). A coarse-to-fine subpixel registration method to recover local perspective deformation in the application of image super-resolution. IEEE Transactions on Image Processing, 21(1), 53–66. https://doi.org/10.1109/TIP.2011.2159731
  • Zhou, Z., Hou, Y., Wang, Q., Chen, G., & Lu, J. (2017). Volume upscaling with convolutional neural networks. In Proceedings of Computer graphics international (pp. 1–6). Yokohama, Japan.
  • Zou, W. W., & Yuen, P. C. (2011). Very low resolution face recognition problem. IEEE Transactions on Image Processing, 21(1), 327–340. https://doi.org/10.1109/TIP.2011.2162423