426
Views
0
CrossRef citations to date
0
Altmetric
Research Article

GCN-based weakly-supervised community detection with updated structure centres selection

, &
Article: 2291995 | Received 28 Aug 2023, Accepted 01 Dec 2023, Published online: 03 Jan 2024

References

  • Adamic, L. A., & Glance, N. (2005, August). The political blogosphere and the 2004 U.S. Election: Divided they blog. LinkKDD '05: Proceedings of the 3rd international workshop on Link discovery, ACM, New York, NY, USA, pp. 36–43. https://doi.org/10.1145/1134271.1134277
  • Berahmand, K., Bouyer, A., & Vasighi, M. (2018). Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes. IEEE Transactions on Computational Social Systems, 5(4), 1021–1033. https://doi.org/10.1109/TCSS.2018.2879494
  • Bhattacharya, R., Nagwani, N. K., & Tripathi, S. (2023). CommunityGCN: Community detection using node classification with graph convolution network. Data Technologies and Applications, https://doi.org/10.1108/DTA-02-2022-0056
  • Chen, J., Ma, T., & Xiao, C. (2018). Fastgcn: Fast learning with graph convolutional networks via importance sampling, CoRR abs/1801.10247. arXiv:1801.10247. http://arxiv.org/abs/1801.10247
  • Danon, L., Díaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09), P09008–P09008. https://doi.org/10.1088/1742-5468/2005/09/P09008
  • Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 29). Curran Associates, Inc. http://arxiv.org/abs/1606.09375
  • Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44. https://doi.org/10.1016/j.physrep.2016.09.002
  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799
  • He, C., Fei, X., Cheng, Q., Li, H., Hu, Z., & Tang, Y. (2021a). A survey of community detection in complex networks using nonnegative matrix factorization. IEEE Transactions on Computational Social Systems, 9(2), 440–457. https://doi.org/10.1109/TCSS.2021.3114419
  • He, C., Zheng, Y., Fei, X., Li, H., Hu, Z., & Tang, Y. (2021b). Boosting nonnegative matrix factorization based community detection with graph attention auto-encoder. IEEE Transactions on Big Data, 8(4), 968–981. https://doi.org/10.1109/TBDATA.2021.3103213
  • He, D., Song, Y., Jin, D., Feng, Z., Zhang, B., Yu, Z., & Zhang, W. (2020). Community-centric graph convolutional network for unsupervised community detection. In C. Bessiere (Ed.), Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20 (pp. 3515–3521). International Joint Conferences on Artificial Intelligence Organization, main track. https://doi.org/10.24963/ijcai.2020/486
  • He, K., Li, Y., Soundarajan, S., & Hopcroft, J. E. (2018). Hidden community detection in social networks. Information Sciences, 425, 92–106. https://doi.org/10.1016/j.ins.2017.10.019
  • Huang, J., Sun, H., Liu, Y., Song, Q., & Weninger, T. (2011). Towards online multiresolution community detection in large-scale networks. PLoS One, 6(8), e23829. https://doi.org/10.1371/journal.pone.0023829
  • Jin, D., Li, B., Jiao, P., He, D., & Shan, H. (2019a). Community detection via joint graph convolutional network embedding in attribute network. Lecture Notes in Computer Science, 11731, 594–606. https://doi.org/10.1007/978-3-030-30493-5_55
  • Jin, D., Liu, Z., Li, W., He, D., & Zhang, W. (2019b). Graph convolutional networks meet Markov random fields: Semi-supervised community detection in attribute networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 152–159. https://doi.org/10.1609/aaai.v33i01.3301152
  • Jin, D., Yu, Z. Z., Jiao, P. F., Pan, S. R., He, D. X., Wu, J., Yu, W., Paris, Yu., & Zhang, W. X. (2021a). A survey of community detection approaches: From statistical modeling to deep learning. IEEE Transactions on Knowledge and Data Engineering, 35(2), 1149–1170. https://doi.org/10.1109/TKDE.2021.3104155
  • Jin, W., Derr, T., Wang, Y., Ma, Y., Liu, Z., & Tang, J. (2021b, March). Node similarity preserving graph convolutional networks. WSDM '21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Association for Computing Machinery, New York, NY, USA, pp. 148-156. https://doi.org/10.1145/3437963.3441735
  • Kingma, D. P., & Ba, J. L. (2015, May 7-9). Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), Conference Track Proceedings, San Diego, CA, USA. https://doi.org/10.48550/arXiv.1412.6980
  • Kipf, T. N., & Welling, M. (2016, November 21). Variational graph auto-encoders. Bayesian Deep Learning Workshop (NIPS 2016). https://doi.org/10.48550/arXiv.1611.07308
  • Kipf, T. N., & Welling, M. (2017, Feburary). Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1609.02907
  • Kochenderfer, M. J., & Wheeler, T. A. (2019). Algorithms for optimization. Mit Press. https://doi.org/10.1007/978-1-4757-3222-1_2
  • Kou, S., Xia, W., Zhang, X., Gao, Q., & Gao, X. (2021). Self-supervised graph convolutional clustering by preserving latent distribution. Neurocomputing, 437, 218–226. https://doi.org/10.1016/j.neucom.2021.01.082
  • Lambiotte, L. N. S., & RenaudPeel, T. (2020). Community detection in networks without observing edges. Science Advances, 6(4), eaav1478. https://doi.org/10.1126/sciadv.aav1478
  • Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015. https://doi.org/10.1088/1367-2630/11/3/033015
  • Lee, C., Reid, F., McDaid, A. F., & Hurley, N. J. (2010). Detecting highly overlapping community structure by greedy clique expansion, pp. 33–42.
  • Li, J., Wang, X., & Wu, P. (2015). Review on community detection methods based on local optimization. Bulletin of Chinese Academy of Sciences, 30(2), 238–247. https://doi.org/10.16418/j.issn.1000-3045.2015.02.011
  • Li, Q., Han, Z., & Wu, X.-M. (2018). Deeper insights into graph convolutional networks for semi-supervised learning. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 32(1), 3538–3545. https://doi.org/10.1609/aaai.v32i1.11604
  • Liu, H., Wu, Z., Li, X., Cai, D., & Huang, T. S. (2011). Constrained nonnegative matrix factorization for image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1299–1311. https://doi.org/10.1109/TPAMI.2011.217
  • Moradi, F., Olovsson, T., & Tsigas, P. (2014). A local seed selection algorithm for overlapping community detection. 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), Beijing, China, pp. 1–8. https://doi.org/10.1109/ASONAM.2014.6921552
  • Namata, G., London, B., Getoor, L., Huang, B., & Edu, U. (2012). Query-driven active surveying for collective classification. 10th International Workshop on Mining and Learning with Graphs (MLG-2012), Edinburgh, Scotland, UK, 8, 1.
  • Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106. https://doi.org/10.1103/PhysRevE.76.036106
  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850. https://doi.org/10.1080/01621459.1971.10482356
  • Rostami, M., Oussalah, M., Berahmand, K., & Farrahi, V. (2023). Community detection algorithms in healthcare applications: A systematic review. IEEE Access 2023, 11, 30247–30272. https://doi.org/10.1109/ACCESS.2023.3260652
  • Sen, P., Namata, G., Bilgic, M., Getoor, L., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(29), 93–106. https://doi.org/10.1609/aimag.v29i3.2157
  • Šubelj, L., & Bajec, M. (2012). Ubiquitousness of link-density and link-pattern communities in real-world networks. The European Physical Journal B, 85(1), 32. https://doi.org/10.1140/epjb/e2011-20448-7
  • Sun, H., & Yang, J. (2023). The generalization of non-negative matrix factorization based on algorithmic stability. Electronics, 12(5), 1147. https://doi.org/10.3390/electronics12051147
  • Sun, K., Lin, Z., & Zhu, Z. (2020). Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes. Proceedings of the AAAI Conference on Artificial Intelligence, 34(4), 5892–5899. https://doi.org/10.1609/aaai.v34i04.6048
  • Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2017). Graph attention networks. International Conference on Learning Representations (ICLR), pp. 1–12. http://arxiv.org/abs/1710.10903
  • Verma, A. K., Saxena, R., Jadeja, M., Bhateja, V., & Lin, J. C. W. (2023). Bet-GAT: An efficient centrality-based graph attention model for semi-supervised node classification. Applied Sciences, 13(2), 847. https://doi.org/10.3390/app13020847
  • Wang, X., Li, J., Yang, L., & Mi, H. (2021). Unsupervised learning for community detection in attributed networks based on graph convolutional network. Neurocomputing, 456, 147–155. https://doi.org/10.1016/j.neucom.2021.05.058
  • Wang, X., Liu, G., Li, J., & Nees, J. P. (2017). Locating structural centers: A density-based clustering method for community detection. PLoS One, 12(1), e0169355. https://doi.org/10.1371/journal.pone.0169355
  • Xie, Y., Xu, Z., Zhang, J., Wang, Z., & Ji, S. (2023). Self-supervised learning of graph neural networks: A unified review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2) 2412–2429. https://doi.org/10.1109/TPAMI.2022.3170559
  • Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?, https://doi.org/10.48550/arXiv.1810.00826
  • Yang, L., Cao, X., He, D., Wang, C., Wang, X., & Zhang, W. (2016). Modularity based community detection with deep learning. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16), 16(2016), 2252–2258. https://doi.org/10.5555/3060832.3060936
  • Zhang, W., Shang, R., Li, Z., Sun, R., & Du, J. (2023). Personalized web page ranking based graph convolutional network for community detection in attribute networks. IEEE Access, 11, 84270–84282. https://doi.org/10.1109/ACCESS.2023.3303210
  • Zheng, W.-P., Che, C.-H., Qian, Y.-H., Wang, J., & Yang, G. (2020). A graph clustering algorithm based on paths between nodes in complex networks. Chinese Journal of Computers, 43(7), 1312–1327. https://doi.org/10.11897/SP.J.1016.2020.01312
  • Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2020). Graph neural networks: A review of methods and applications. AI Open, 1, 57–81. https://doi.org/10.1016/j.aiopen.2021.01.001