890
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Blockchain-based privacy-preserving multi-tasks federated learning framework

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2299103 | Received 05 Jul 2023, Accepted 20 Dec 2023, Published online: 08 Jan 2024

References

  • Ayaz, F., Sheng, Z., Tian, D., & Guan, Y. L. (2022). A blockchain based federated learning for message dissemination in vehicular networks. IEEE Transactions on Vehicular Technology, 71(2), 1927–1940. https://doi.org/10.1109/TVT.2021.3132226
  • Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., & Shmatikov, V. (2020). How to backdoor federated learning. In International conference on artificial intelligence and statistics (pp. 2938–2948). PMLR.
  • Bao, X., Su, C., Xiong, Y., Huang, W., & Hu, Y. (2019). FLChain: A blockchain for auditable federated learning with trust and incentive. In: 2019 5th international conference on big data computing and communications (BIGCOM) (pp. 151–159). https://doi.org/10.1109/BIGCOM.2019.00030
  • Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., Mcmahan, H. B., Patel, S., Ramage, D., Segal, A., & Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications securit (pp. 1175–1191).
  • Cai, C., Zheng, Y., Zhou, A., & Wang, C. (2019). Building a secure knowledge marketplace over crowdsensed data streams. IEEE Transactions on Dependable and Secure Computing, 18(6), 2601–2021. https://doi.org/10.1109/TDSC.2019.2958901
  • Chai, D., Wang, L., Chen, K., & Yang, Q. (2021). Secure federated matrix factorization. IEEE Intelligent Systems, 36(5), 11–20. https://doi.org/10.1109/MIS.2020.3014880
  • Fang, C., Guo, Y., Ma, J., Xie, H., & Wang, Y. (2022). A privacy-preserving and verifiable federated learning method based on blockchain. Computer Communications, 186, 1–11. https://www.sciencedirect.com/science/article/pii/S0140366422000081. https://doi.org/10.1016/j.comcom.2022.01.002
  • Fang, W., Li, Y., Zhang, H., Xiong, N., Lai, J., & Vasilakos, A. V. (2014). On the throughput-energy tradeoff for data transmission between cloud and mobile devices. Information Sciences, 283, 79–93.
  • Fu, A., Zhang, X., Xiong, N., Gao, Y., Wang, H., & Zhang, J. (2022). VFL: A verifiable federated learning with privacy-preserving for big data in industrial IoT. IEEE Transactions on Industrial Informatics, 18(5), 3316–2022. https://doi.org/10.1109/TII.2020.3036166
  • Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client level perspective. arXiv preprint, arXiv:1712.07557.
  • Hao, M., Li, H., Luo, X., Xu, G., Yang, H., & Liu, S. (2020). Efficient and privacy-enhanced federated learning for industrial artificial intelligence. IEEE Transactions on Industrial Informatics, 16(10), 6532–6542. https://doi.org/10.1109/TII.2019.2945367
  • Hao, M., Li, H., Xu, G., Liu, S., & Yang, H. (2019). Towards efficient and privacy-preserving federated deep learning. In: ICC 2019–2019 IEEE International Conference on Communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2019.8761267
  • He, Z., Wang, L., & Cai, Z. (2023). Clustered federated learning with adaptive local differential privacy on heterogeneous IoT data. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2023.3299947
  • Hu, W.-J., Fan, J., Du, Y.-X., Li, B.-S., Xiong, N., & Bekkering, E. (2020). MDFC–ResNet: An agricultural IoT system to accurately recognize crop diseases. IEEE Access, 8, 115287–115298. https://doi.org/10.1109/Access.6287639
  • Kanagavelu, R., Li, Z., Samsudin, J., Yang, Y., Yang, F., Goh, R. S. M., Cheah, M., Wiwatphonthana, P., Akkarajitsakul, K., & Wangz, S. (2020). Two-phase multi-party computation enabled privacy-preserving federated learning. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID) (pp. 410–419). https://doi.org/10.1109/CCGrid49817.2020.00-52
  • Kang, L., Chen, R.-S., Xiong, N., Chen, Y.-C., Hu, Y.-X., & Chen, C.-M. (2019). Selecting hyper-parameters of gaussian process regression based on non-inertial particle swarm optimization in internet of things. IEEE Access, 7, 59504–59513. https://doi.org/10.1109/Access.6287639
  • Kim, H., Park, J., Bennis, M., & Kim, S. L. (2020). Blockchained on-device federated learning. IEEE Communications Letters, 24(6), 1279–1283. https://doi.org/10.1109/LCOMM.2019.2921755
  • Kumar, R., Khan, A. A., Kumar, J., Golilarz, N. A., Zhang, S., Ting, Y., Zheng, C., & Wang, W. (2021). Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging. IEEE Sensors Journal, 21(14), 16301–16314. https://doi.org/10.1109/JSEN.2021.3076767
  • Kursawe, K., Danezis, G., & Kohlweiss, M. (2011). Privacy-friendly aggregation for the smart-grid. In: Privacy Enhancing Technologies: 11th International Symposium, PETS 2011, Waterloo, ON, Canada, July 27–29, 2011. proceedings (pp. 175–191). Springer.
  • Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., & Chen, Y. (2021). FedMask: Joint computation and communication-efficient personalized federated learning via heterogeneous masking. In: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (pp. 42–55).
  • Lian, X., Zhang, C., Zhang, H., Hsieh, C. J., Zhang, W., & Liu, J. (2017). Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. Advances in Neural Information Processing Systems, 30, arXiv:1705.09056.
  • Liu, X., Li, H., Xu, G., Chen, Z., Huang, X., & Lu, R. (2021). Privacy-enhanced federated learning against poisoning adversaries. IEEE Transactions on Information Forensics and Security, 16, 4574–4588. https://doi.org/10.1109/TIFS.2021.3108434
  • Ma, C., Li, J., Shi, L., Ding, M., Wang, T., Han, Z., & Poor, H. V. (2022). ). When federated learning meets blockchain: A new distributed learning paradigm. IEEE Computational Intelligence Magazine, 17(3), 26–33. https://doi.org/10.1109/MCI.2022.3180932
  • Majeed, U., & Hong, C. S. (2019). FLchain: Federated learning via MEC-enabled blockchain network. In: 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 1–4). https://doi.org/10.23919/APNOMS.2019.8892848
  • Melis, L., Song, C., De Cristofaro, E., & Shmatikov, V. (2019). Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE symposium on security and privacy (SP) (pp. 691–706). https://doi.org/10.1109/SP.2019.00029
  • Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D., & Kourtellis, N. (2021). PPFL: Privacy-preserving federated learning with trusted execution environments. In: Proceedings of the 19th annual international conference on mobile systems, applications, and services (pp. 94–108)
  • Nasr, M., Shokri, R., & Houmansadr, A. (2019). Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In: 2019 IEEE symposium on security and privacy (SP) (pp. 739–753). https://doi.org/10.1109/SP.2019.00065
  • Nuding, F., & Mayer, R. (2020). Poisoning attacks in federated learning: An evaluation on traffic sign classification. In: Proceedings of the tenth ACM conference on data and application security and privacy (pp. 168–170).
  • Otoum, S., Al Ridhawi, I., & Mouftah, H. T. (2020). Blockchain-supported federated learning for trustworthy vehicular networks. In: Globecom 2020 – 2020 IEEE global communications conference (pp. 1–6). https://doi.org/10.1109/GLOBECOM42002.2020.9322159
  • Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In: International conference on the theory and applications of cryptographic techniques (pp. 223–238). Springer.
  • Phong, L. T., Aono, Y., Hayashi, T., Wang, L., & Moriai, S. (2018). Privacy-preserving deep learning via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security, 13(5), 1333–1345. https://doi.org/10.1109/TIFS.2017.2787987
  • Qi, Y., Hossain, M. S., Nie, J., & Li, X. (2021). Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Generation Computer Systems, 117(2946), 328–337. https://doi.org/10.1016/j.future.2020.12.003
  • Rückel, T., Sedlmeir, J., & Hofmann, P. (2022). Fairness, integrity, and privacy in a scalable blockchain-based federated learning system. Computer Networks, 202, 108621. https://doi.org/10.1016/j.comnet.2021.108621
  • Sayyad, S. (2020). Privacy preserving deep learning using secure multiparty computation. In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 139–142). https://doi.org/10.1109/ICIRCA48905.2020.9183133
  • So, J., Ali, R. E., Güler, B., Jiao, J., & Avestimehr, A. S. (2023). Securing secure aggregation: Mitigating multi-round privacy leakage in federated learning. In: Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, pp. 9864–9873).
  • Sotthiwat, E., Zhen, L., Li, Z., & Zhang, C. (2021). Partially encrypted multi-party computation for federated learning. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet computing (CCGRID) (pp. 828–835). https://doi.org/10.1109/CCGrid51090.2021.00101
  • Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artificial intelligence and machine learning in smart cities. Computer Communications, 154, 313–323. https://doi.org/10.1016/j.comcom.2020.02.069
  • Wan, Y., Qu, Y., Gao, L., & Xiang, Y. (2022a). Privacy-preserving blockchain-enabled federated learning for B5G-Driven edge computing. Computer Networks, 204, 108671. https://doi.org/10.1016/j.comnet.2021.108671
  • Wan, Y., Qu, Y., Gao, L., & Xiang, Y. (2022b). Privacy-preserving blockchain-enabled federated learning for B5G-Driven edge computing. Computer Networks, 204, 108671. https://www.sciencedirect.com/science/article/pii/S1389128621005454. https://doi.org/10.1016/j.comnet.2021.108671
  • Wang, N., Yang, W., Wang, X., Wu, L., Guan, Z., Du, X., & Guizani, M. (2022). A blockchain based privacy-preserving federated learning scheme for internet of vehicles. Digital Communications and Networks. https://www.sciencedirect.com/science/article/pii/S2352864822001134. https://doi.org/10.1016/j.dcan.2022.05.020
  • Wang, W., Wang, Y., Huang, Y., Mu, C., Sun, Z., Tong, X., & Cai, Z. (2022). Privacy protection federated learning system based on blockchain and edge computing in mobile crowdsourcing. Computer Networks, 215, 109206. https://www.sciencedirect.com/science/article/pii/S1389128622002936. https://doi.org/10.1016/j.comnet.2022.109206
  • Wang, Y., Fang, W., Ding, Y., & Xiong, N. (2021). Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach. Wireless Networks, 27(4), 2991–3006. https://doi.org/10.1007/s11276-021-02632-z
  • Wei, K., Li, J., Ding, M., Ma, C., & Poor, H. V. (2020). Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 153454–3469. https://doi.org/10.1109/TIFS.2020.2988575
  • Wei, W., Liu, L., Loper, M., Chow, K. H., Gursoy, M. E., Truex, S., & Wu, Y. (2020). A framework for evaluating gradient leakage attacks in federated learning. arXiv preprint, arXiv:2004.10397.
  • Xu, G., Liu, Y., & Khan, P. W. (2020). Improvement of the DPoS consensus mechanism in blockchain based on vague sets. IEEE Transactions on Industrial Informatics, 16(6), 4252–4259. https://doi.org/10.1109/TII.2019.2955719
  • Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., & Ludwig, H. (2019). HybridAlpha: An efficient approach for privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on artificial intelligence and security (pp. 13–23).
  • Yang, Q., Fan, L., Tong, R., & Lv, A. (2021). IEEE federated machine learning. IEEE Federated Machine Learning – White Paper 1-18.
  • Yang, Z., Chen, Y., Huangfu, H., Ran, M., Wang, H., Li, X., & Zhang, Y. (2023). Dynamic corrected split federated learning with homomorphic encryption for U-shaped medical image networks. IEEE Journal of Biomedical and Health Informatics, 27( 12), 5946. https://doi.org/10.1109/JBHI.2023.3317632
  • Zamani, M., Movahedi, M., & Raykova, M. (2018). Rapidchain: Scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security (pp. 931–948).
  • Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., & Liu, Y. (2020). BatchCrypt: Efficient homomorphic encryption for Cross-Silo federated learning. In: 2020 USENIX annual technical conference (USENIX ATC 20) (pp. 493–506).
  • Zhang, W., Lu, Q., Yu, Q., Li, Z., Liu, Y., Lo, S. K., Chen, S., Xu, X., Zhu, L. (2021). Blockchain-based federated learning for device failure detection in industrial IoT. IEEE Internet of Things Journal, 8(7), 5926–5937. https://doi.org/10.1109/JIOT.2020.3032544
  • Zhang, W., Zhu, S., Tang, J., & Xiong, N. (2018). A novel trust management scheme based on Dempster–Shafer evidence theory for malicious nodes detection in wireless sensor networks. The Journal of Supercomputing, 74(4), 1779–1801. https://doi.org/10.1007/s11227-017-2150-3
  • Zhao, C., Gao, Z., Wang, Q., Xiao, K., & Mo, Z. (2021). AFL: An adaptively federated multi-task learning for model sharing in industrial IoT. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2021.3125989
  • Zhao, J., Huang, J., & Xiong, N. (2019). An effective exponential-based trust and reputation evaluation system in wireless sensor networks. IEEE Access, 7, 33859–33869. https://doi.org/10.1109/ACCESS.2019.2904544
  • Zhou, J., Cao, Z., Dong, X., & Lin, X. (2015). PPDM: A privacy-preserving protocol for cloud-assisted e-healthcare systems. IEEE Journal of Selected Topics in Signal Processing, 9(7), 1332–1344. https://doi.org/10.1109/JSTSP.2015.2427113