341
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Explainable data mining model for hyperinsulinemia diagnostics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2325496 | Received 02 Sep 2023, Accepted 26 Feb 2024, Published online: 04 Mar 2024

References

  • Abunadi, I. (2022). Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer’s disease. Connection Science, 34(1), 2395–2430. https://doi.org/10.1080/09540091.2022.2123450
  • Alam, A., & Muqeem, M. (2022, March). Integrated k-means clustering with nature inspired optimization algorithm for the prediction of disease on high dimensional data. In 2022 international conference on electronics and renewable systems (ICEARS) (pp. 1556–1561), Organized by: St. Mother Theresa Engineering College. IEEE.
  • Alam, M. Z., Rahman, M. S., & Rahman, M. S. (2019). A random forest based predictor for medical data classification using feature ranking. Informatics in Medicine Unlocked, 15, 100180. https://doi.org/10.1016/j.imu.2019.100180
  • Andes, L. J., Cheng, Y. J., Rolka, D. B., Gregg, E. W., & Imperatore, G. (2020). Prevalence of prediabetes among adolescents and young adults in the United States, 2005-2016. JAMA pediatrics, 174(2), e194498–e194498. https://doi.org/10.1001/jamapediatrics.2019.4498
  • Anowar, F., Sadaoui, S., & Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). Computer Science Review, 40, 100378. https://doi.org/10.1016/j.cosrev.2021.100378
  • Arora, N., Singh, A., Al-Dabagh, M. Z. N., & Maitra, S. K. (2022). A novel architecture for diabetes patients’ prediction using K-means clustering and SVM. Mathematical Problems in Engineering, 2022, 4815521.
  • Austin, P. C., White, I. R., Lee, D. S., & van Buuren, S. (2021). Missing data in clinical research: A tutorial on multiple imputation. Canadian Journal of Cardiology, 37(9), 1322–1331. https://doi.org/10.1016/j.cjca.2020.11.010
  • Bansal, A., & Singhrova, A. (2022). An improved machine learning prediction model for diabetes. In ICDSMLA 2020: Proceedings of the 2nd international conference on data science, machine learning and applications (pp. 131–144). Springer Singapore.
  • Borkin, D., Némethová, A., Michaľčonok, G., & Maiorov, K. (2019). Impact of data normalization on classification model accuracy. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 27(45), 79–84. https://doi.org/10.2478/rput-2019-0029
  • Calcaterra, V., Biganzoli, G., Ferraro, S., Verduci, E., Rossi, V., Vizzuso, S., Bosetti, A., Borsani, B., Biganzoli, E., & Zuccotti, G. (2022). A multivariate analysis of “metabolic phenotype” patterns in children and adolescents with obesity for the early stratification of patients at risk of metabolic syndrome. Journal of Clinical Medicine, 11(7), 1856. https://doi.org/10.3390/jcm11071856
  • Chang, V., Bailey, J., Xu, Q. A., & Sun, Z. (2023). Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural Computing and Applications, 35(22), 16157–16173. https://doi.org/10.1007/s00521-022-07049-z
  • Chauhan, T., Rawat, S., Malik, S., & Singh, P. (2021). Supervised and unsupervised machine learning based review on diabetes care. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2021, pp. 581–585. https://doi.org/10.1109/ICACCS51430.2021.9442021.
  • Chen, Z., Ma, M., Li, T., Wang, H., & Li, C. (2023). Long sequence time-series forecasting with deep learning: A survey. Information Fusion, 97, 101819. https://doi.org/10.1016/j.inffus.2023.101819
  • Choubey, D. K., Kumar, P., Tripathi, S., & Kumar, S. (2020). Performance evaluation of classification methods with PCA and PSO for diabetes. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 1–30. https://doi.org/10.1007/s13721-019-0210-8
  • Edeh, M. O., Khalaf, O. I., Tavera, C. A., Tayeb, S., Ghouali, S., Abdulsahib, G. M., Richard-Nnabu, N. E., & Louni, A. (2022). A classification algorithm-based hybrid diabetes prediction model. Frontiers in Public Health, 10, 829519. https://doi.org/10.3389/fpubh.2022.829519
  • Ganguly, R., & Singh, D. (2023). An approach to predict early diabetes mellitus with an unsupervised clustering technique. International Journal of Intelligent Systems and Applications in Engineering, 11(3), 45–55.
  • Gecili, E., Huang, R., Khoury, J. C., King, E., Altaye, M., Bowers, K., & Szczesniak, R. D. (2021). Functional data analysis and prediction tools for continuous glucose-monitoring studies. Journal of Clinical and Translational Science, 5(1), e51. https://doi.org/10.1017/cts.2020.545
  • Ghourabi, A. (2022). A security model based on lightgbm and transformer to protect healthcare systems from cyberattacks. IEEE Access, 10, 48890–48903. https://doi.org/10.1109/ACCESS.2022.3172432
  • Halloun, R., Galderisi, A., Caprio, S., & Weiss, R. (2022). Lack of evidence for a causal role of hyperinsulinemia in the progression of obesity in children and adolescents: A longitudinal study. Diabetes Care, 45(6), 1400–1407. https://doi.org/10.2337/dc21-2210
  • Hasan, B. M. S., & Abdulazeez, A. M. (2021). A review of principal component analysis algorithm for dimensionality reduction. Journal of Soft Computing and Data Mining, 2(1), 20–30.
  • Hassan, M. M., Mollick, S., & Yasmin, F. (2022). An unsupervised cluster-based feature grouping model for early diabetes detection. Healthcare Analytics, 2, 01–05, 100112. https://doi.org/10.1016/j.health.2022.100112
  • Hassan, M. M., Peya, Z. J., Mollick, S., Billah, M. A. M., Shakil, M. M. H., & Dulla, A. U. (2021, July). Diabetes prediction in healthcare at early stage using machine learning approach. In 2021 12th International conference on computing communication and networking technologies (ICCCNT) (pp. 01-05). IEEE.
  • Horta, B. L., & de Lima, N. P. (2019). Breastfeeding and type 2 diabetes: Systematic review and meta-analysis. Current Diabetes Reports, 19(1), 1–6. https://doi.org/10.1007/s11892-019-1121-x
  • Hu, N., Zhang, D., Xie, K., Liang, W., & Hsieh, M.-Y. (2022). Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting. Connection Science, 34(1), 429–448. https://doi.org/10.1080/09540091.2021.2006607
  • IDF Diabetes Atlas. (2021). Online version of IDF diabetes atlas: 10th edition. www.diabetesatlas.org, ISBN: 978-2-930229-98-0
  • Khairunnisa, S., Suyanto, S., & Yunanto, P. E. (2020, December). Removing noise, reducing dimension, and weighting distance to enhance $ k $-nearest neighbors for diabetes classification. In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 471-475). IEEE.
  • Knapič, S., Malhi, A., Saluja, R., & Främling, K. (2021). Explainable artificial intelligence for human decision support system in the medical domain. Machine Learning and Knowledge Extraction, 3(3), 740–770. https://doi.org/10.3390/make3030037
  • Koch, C. A., Bartel, M. J., & Weinberg, D. S. (2021). Possible mechanisms: Hyperinsulinemia and endocrine disrupting chemicals. Deutsches Ärzteblatt international, 118(15), 271.
  • Lama, L., Wilhelmsson, O., Norlander, E., Gustafsson, L., Lager, A., Tynelius, P., Wärvik, L., & Östenson, C. G. (2021). Machine learning for prediction of diabetes risk in middle-aged Swedish people. Heliyon, 7(7), e07419. https://doi.org/10.1016/j.heliyon.2021.e07419
  • Li, J., Huang, J., Jiang, T., Tu, L., Cui, L., Cui, J., Ma, X., Yao, X., Shi, Y., Wang, S., Wang, Y., Liu, J., Li, Y., Zhou, C., Hu, X., & Xu, J. (2022). A multi-step approach for tongue image classification in patients with diabetes. Computers in Biology and Medicine, 149, 105935. https://doi.org/10.1016/j.compbiomed.2022.105935
  • Li, M., Fu, X., & Li, D. (2020, March). Diabetes prediction based on XGBoost algorithm. In IOP conference series: Materials science and engineering (Vol. 768 (7), p. 072093). IOP Publishing.
  • Muhammad, M. U., Jiadong, R., Muhammad, N. S., Hussain, M., & Muhammad, I. (2019). Principal component analysis of categorized polytomous variable-based classification of diabetes and other chronic diseases. International Journal of Environmental Research and Public Health, 16(19), 3593. https://doi.org/10.3390/ijerph16193593
  • Nohara, Y., Matsumoto, K., Soejima, H., & Nakashima, N. (2022). Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Computer Methods and Programs in Biomedicine, 214, 106584. https://doi.org/10.1016/j.cmpb.2021.106584
  • Pan, Y., Laber, E. B., Smith, M. A., & Zhao, Y. Q. (2023). Reinforced risk prediction with budget constraint using irregularly measured data from electronic health records. Journal of the American Statistical Association, 118(542), 1090–1101. https://doi.org/10.1080/01621459.2021.1978467
  • Rasha, A.-H., Li, T., Huang, W., Gu, J., & Li, C. (2023). Federated learning in smart cities: Privacy and security survey. Information Sciences, 632, 833–857.
  • Razvi, S. S., Feng, S., Narayanan, A., Lee, Y. T. T., & Witherell, P. (2019, August). A review of machine learning applications in additive manufacturing. In International design engineering technical conferences and computers and information in engineering conference (Vol. 59179, p. V001T02A040). American Society of Mechanical Engineers.
  • Ripan, R. C., Sarker, I. H., Hossain, S. M. M., Anwar, M. M., Nowrozy, R., Hoque, M. M., & Furhad, M. H. (2021). A data-driven heart disease prediction model through K-means clustering-based anomaly detection. SN Computer Science, 2(2), 1–12. https://doi.org/10.1007/s42979-021-00518-7
  • Rufo, D. D., Debelee, T. G., Ibenthal, A., & Negera, W. G. (2021). Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM). Diagnostics, 11(9), 1714. https://doi.org/10.3390/diagnostics11091714
  • Ryder, J. R., Northrop, E., Rudser, K. D., Kelly, A. S., Gao, Z., Khoury, P. R., Kimball, T. R., Dolan, L. M., & Urbina, E. M. (2020). Accelerated early vascular aging among adolescents with obesity and/or type 2 diabetes mellitus. Journal of the American Heart Association, 9(10), e014891. https://doi.org/10.1161/JAHA.119.014891
  • Savić, M., Kurbalija, V., Ilić, M., Ivanović, M., Jakovetić, D., Valachis, A., Autexier, S., Rust, J., & Kosmidis, T. (2023). The application of machine learning techniques in prediction of quality of life features for cancer patients. Computer Science and Information Systems, 20(1), 381–404. https://doi.org/10.2298/CSIS220227061S
  • Slack, D., Hilgard, S., Jia, E., Singh, S., & Lakkaraju, H. (2020, February). Fooling lime and shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 180–186. https://doi.org/10.1145/3375627.3375830
  • Su, Y., Dai, Y., Zeng, Y., Wei, C., Chen, Y., Ge, F., Zheng, P., Zhou, D., Dral, P. O., & Wang, C. (2023). Interpretable machine learning of two-photon absorption. Advanced Science, 10(8), 2204902. https://doi.org/10.1002/advs.202204902
  • Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022a). IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
  • Sun, K., Li, W., Saikrishna, V., Chadhar, M., & Xia, F. (2022b). COVID-19 datasets: A brief overview. Computer Science and Information Systems, 19(3), 1115–1132. https://doi.org/10.2298/CSIS210822014S
  • Sun, X., Bright, J. M., Gueymard, C. A., Acord, B., Wang, P., & Engerer, N. A. (2019). Worldwide performance assessment of 75 global clear-sky irradiance models using principal component analysis. Renewable and Sustainable Energy Reviews, 111, 550–570. https://doi.org/10.1016/j.rser.2019.04.006
  • Thabtah, F., Hammoud, S., Kamalov, F., & Gonsalves, A. (2020). Data imbalance in classification: Experimental evaluation. Information Sciences, 513, 429–441. https://doi.org/10.1016/j.ins.2019.11.004
  • Thenappan, S., Valan Rajkumar, M., & Manoharan, P. S. (2022). Predicting diabetes mellitus using modified support vector machine with cloud security. IETE Journal of Research, 68(6), 3940–3950. https://doi.org/10.1080/03772063.2020.1782781
  • Thomas, D. D., Corkey, B. E., Istfan, N. W., & Apovian, C. M. (2019). Hyperinsulinemia: An early indicator of metabolic dysfunction. Journal of the Endocrine Society, 3(9), 1727–1747. https://doi.org/10.1210/js.2019-00065
  • Velliangiri, S., & Alagumuthukrishnan, S. J. P. C. S. (2019). A review of dimensionality reduction techniques for efficient computation. Procedia Computer Science, 165, 104–111. https://doi.org/10.1016/j.procs.2020.01.079
  • Vrbančič, G., Pečnik, Š, & Podgorelec, V. (2022). Hyper-parameter optimization of convolutional neural networks for classifying COVID-19 X-ray images. Computer Science and Information Systems, 19(1), 327–352. https://doi.org/10.2298/CSIS210209056V
  • Wang, B., & Zhang, S. (2022). A new locally adaptive K-nearest centroid neighbor classification based on the average distance. Connection Science, 34(1), 2084–2107. https://doi.org/10.1080/09540091.2022.2088695
  • Wang, K., Tian, J., Zheng, C., Yang, H., Ren, J., Liu, Y., Han, Q., & Zhang, Y. (2021). Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Computers in Biology and Medicine, 137, 2084–2107, 104813. https://doi.org/10.1016/j.compbiomed.2021.104813
  • Wang, Z., Han, D., Li, M., Liu, H., & Cui, M. (2022). The abnormal traffic detection scheme based on PCA and SSH. Connection Science, 34(1), 1201–1220. https://doi.org/10.1080/09540091.2021.1936455
  • Wu, H., Yang, S., Huang, Z., He, J., & Wang, X. (2018). Type 2 diabetes mellitus prediction model based on data mining. Informatics in Medicine Unlocked, 10, 100–107. https://doi.org/10.1016/j.imu.2017.12.006
  • Xu, Z., Shen, D., Nie, T., & Kou, Y. (2020). A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data. Journal of Biomedical Informatics, 107, 103465. https://doi.org/10.1016/j.jbi.2020.103465
  • Yadav, A., Verma, H. K., & Awasthi, L. K. (2021). Voting classification method with PCA and K-means for diabetic prediction. In Innovations in Computer Science and Engineering: Proceedings of 8th ICICSE (pp. 651-656). Springer Singapore.
  • Ye, Y., Xiong, Y., Zhou, Q., Wu, J., Li, X., & Xiao, X. (2020). Comparison of machine learning methods and conventional logistic regressions for predicting gestational diabetes using routine clinical data: A retrospective cohort study. Journal of Diabetes Research, 2020.
  • Zhang, D., & Gong, Y. (2020). The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure. IEEE Access, 8, 220990–221003. https://doi.org/10.1109/ACCESS.2020.3042848
  • Zhang, X., Yan, C., Gao, C., Malin, B. A., & Chen, Y. (2020). Predicting missing values in medical data via XGBoost regression. Journal of healthcare informatics research, 4(4), 383–394. https://doi.org/10.1007/s41666-020-00077-1
  • Zhou, F., Du, X., Li, W., Lu, Z., & Huang, S. C. (2023). Fidan: A predictive service demand model for assisting nursing home health-care robots. Connection Science, 35 (1), 2267791.
  • Zhu, C., Idemudia, C. U., & Feng, W. (2019). Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Informatics in Medicine Unlocked, 17, 100179. https://doi.org/10.1016/j.imu.2019.100179