2,071
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The cutaneous effects of androgens and androgen-mediated sebum production and their pathophysiologic and therapeutic importance in acne vulgaris

&
Article: 2298878 | Received 26 Oct 2023, Accepted 14 Dec 2023, Published online: 08 Jan 2024

References

  • Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74(5):1–9. doi: 10.1016/j.jaad.2015.12.037.
  • Elsaie ML. Hormonal treatment of acne vulgaris: an update. Clin Cosmet Investig Dermatol. 2016;9:241–248. doi: 10.2147/CCID.S114830.
  • Clayton RW, Langan EA, Ansell DM, et al. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc. 2020;95(3):592–624. doi: 10.1111/brv.12579.
  • Dart DA. Androgens have forgotten and emerging roles outside of their reproductive functions, with implications for diseases and disorders. J Endocr Disord. 2014;1(1):1005.
  • Hay JB, Hodgins MB. Distribution of androgen metabolizing enzymes in isolated tissues of human forehead and axillary skin. J Endocrinol. 1978;79(1):29–39. doi: 10.1677/joe.0.0790029.
  • Hay JB, Hodgins MB. Metabolism of androgens by human skin in acne. Br J Dermatol. 1974;91(2):123–133. doi: 10.1111/j.1365-2133.1974.tb15857.x.
  • Bloch B. Metabolism, endocrine glands and skin diseases, with special reference to acne vulgaris and xanthoma. Br J Dermatol. 1931;43(2):61–87. doi: 10.1111/j.1365-2133.1931.tb09468.x.
  • Lynn DD, Umari T, Dunnick CA, et al. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016;7:13–25. doi: 10.2147/AHMT.S55832.
  • Leyden JJ. A review of the use of combination therapies for the treatment of acne vulgaris. J Am Acad Dermatol. 2003;49(3 Suppl):S200–S210. doi: 10.1067/s0190-9622(03)01154-x.
  • Thiboutot D, Jabara S, McAllister JM, et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120(6):905–914. doi: 10.1046/j.1523-1747.2003.12244.x.
  • Thiboutot D, Bayne E, Thorne J, et al. Immunolocalization of 5alpha-reductase isozymes in acne lesions and normal skin. Arch Dermatol. 2000;136(9):1125–1129. doi: 10.1001/archderm.136.9.1125.
  • Inoue T, Miki Y, Kakuo S, et al. Expression of steroidogenic enzymes in human sebaceous glands. J Endocrinol. 2014;222(3):301–312. doi: 10.1530/JOE-14-0323.
  • Thiboutot D, Martin P, Volikos L, et al. Oxidative activity of the type 2 isozyme of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) predominates in human sebaceous glands. J Invest Dermatol. 1998;111(3):390–395. doi: 10.1046/j.1523-1747.1998.00322.x.
  • Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.
  • Bläuer M, Vaalasti A, Pauli SL, et al. Location of androgen receptor in human skin. J Invest Dermatol. 1991;97(2):264–268. doi: 10.1111/1523-1747.ep12480373.
  • Liang T, Hoyer S, Yu R, et al. Immunocytochemical localization of androgen receptors in human skin using monoclonal antibodies against the androgen receptor. J Invest Dermatol. 1993;100(5):663–666. doi: 10.1111/1523-1747.ep12472330.
  • Estrada M, Espinosa A, Müller M, et al. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology. 2003;144(8):3586–3597. doi: 10.1210/en.2002-0164.
  • Papakonstanti EA, Kampa M, Castanas E, et al. A rapid, nongenomic, signaling pathway regulates the actin reorganization induced by activation of membrane testosterone receptors. Mol Endocrinol. 2003;17(5):870–881. doi: 10.1210/me.2002-0253.
  • Ottaviani M, Camera E, Picardo M. Lipid mediators in acne. Mediators Inflamm. 2010;2010:858176. doi: 10.1155/2010/858176.
  • Zouboulis CC, Jourdan E, Picardo M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol Venereol. 2014;28(5):527–532. doi: 10.1111/jdv.12298.
  • De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. 2010;2010:321494. doi: 10.1155/2010/321494.
  • House JS, Zhu S, Ranjan R, et al. C/EBPalpha and C/EBPbeta are required for sebocyte differentiation and stratified squamous differentiation in adult mouse skin. PLOS One. 2010;5(3):e9837. doi: 10.1371/journal.pone.0009837.
  • Dahlhoff M, Camera E, Schäfer M, et al. Sebaceous lipids are essential for water repulsion, protection against UVB-induced apoptosis and ocular integrity in mice. Development. 2016;143(10):1823–1831. doi: 10.1242/dev.132753.
  • Imperato-McGinley J, Gautier T, Cai LQ, et al. The androgen control of sebum production. Studies of subjects with dihydrotestosterone deficiency and complete androgen insensitivity. J Clin Endocrinol Metab. 1993;76(2):524–528. doi: 10.1210/jcem.76.2.8381804.
  • Tincello DG, Saunders PT, Hodgins MB, et al. Correlation of clinical, endocrine and molecular abnormalities with in vivo responses to high-dose testosterone in patients with partial androgen insensitivity syndrome. Clin Endocrinol. 1997;46(4):497–506. doi: 10.1046/j.1365-2265.1997.1140927.x.
  • Del Rosso JQ, Kircik LH, Stein Gold L, et al. Androgens, androgen receptors, and the skin: from the laboratory to the clinic with emphasis on clinical and therapeutic implications. J Drugs Dermatol. 2020;19(3):30–35.
  • Kim YJ, Lee SB, Lee HB. Oleic acid enhances keratinocytes differentiation via the upregulation of miR-203 in human epidermal keratinocytes. J Cosmet Dermatol. 2019;18(1):383–389. doi: 10.1111/jocd.12543.
  • Li WH, Zhang Q, Flach CR, et al. In vitro modeling of unsaturated free fatty acid-mediated tissue impairments seen in acne lesions. Arch Dermatol Res. 2017;309(7):529–540. doi: 10.1007/s00403-017-1747-y.
  • Kumtornrut C, Yamauchi T, Koike S, et al. Androgens modulate keratinocyte differentiation indirectly through enhancing growth factor production from dermal fibroblasts. J Dermatol Sci. 2019;93(3):150–158. doi: 10.1016/j.jdermsci.2019.01.007.
  • Elias PM, Brown BE, Ziboh VA. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J Invest Dermatol. 1980;74(4):230–233. doi: 10.1111/1523-1747.ep12541775.
  • Kim J, Ochoa MT, Krutzik SR, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169(3):1535–1541. doi: 10.4049/jimmunol.169.3.1535.
  • Nagy I, Pivarcsi A, Koreck A, et al. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124(5):931–938. doi: 10.1111/j.0022-202X.2005.23705.x.
  • Tanghetti EA. The role of inflammation in the pathology of acne. J Clin Aesthet Dermatol. 2013;6(9):27–35.
  • Nakatsuji T, Kao MC, Zhang L, et al. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Invest Dermatol. 2010;130(4):985–994. doi: 10.1038/jid.2009.384.
  • Rosette C, Agan FJ, Mazzetti A, et al. Cortexolone 17alpha-propionate (clascoterone) is a novel androgen receptor antagonist that inhibits production of lipids and inflammatory cytokines from sebocytes in vitro. J Drugs Dermatol. 2019;18(5):412–418.
  • WINLEVI® (clascoterone cream 1%). Prescribing information. Cranbury (NJ): Sun Pharmaceutical Industries, Inc.; 2022.
  • Perisho K, Wertz PW, Madison KC, et al. Fatty acids of acylceramides from comedones and from the skin surface of acne patients and control subjects. J Invest Dermatol. 1988;90(3):350–353. doi: 10.1111/1523-1747.ep12456327.
  • Stewart ME, Grahek MO, Cambier LS, et al. Dilutional effect of increased sebaceous gland activity on the proportion of linoleic acid in sebaceous wax esters and in epidermal acylceramides. J Invest Dermatol. 1986;87(6):733–736. doi: 10.1111/1523-1747.ep12456856.
  • Stewart ME, Greenwood R, Cunliffe WJ, et al. Effect of cyproterone acetate-ethinyl estradiol treatment on the proportions of linoleic and sebaleic acids in various skin surface lipid classes. Arch Dermatol Res. 1986;278(6):481–485. doi: 10.1007/BF00455168.
  • Lee WJ, Jung HD, Chi SG, et al. Effect of dihydrotestosterone on the upregulation of inflammatory cytokines in cultured sebocytes. Arch Dermatol Res. 2010;302(6):429–433. doi: 10.1007/s00403-009-1019-6.
  • Hebert A, Thiboutot D, Stein Gold L, et al. Efficacy and safety of topical clascoterone cream, 1%, for treatment in patients with facial acne: two phase 3 randomized clinical trials. JAMA Dermatol. 2020;156(6):621–630. doi: 10.1001/jamadermatol.2020.0465.
  • Rosenfield RL, Kentsis A, Deplewski D, et al. Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors. J Invest Dermatol. 1999;112(2):226–232. doi: 10.1046/j.1523-1747.1999.00487.x.
  • Rosenfield RL, Deplewski D, Kentsis A, et al. Mechanisms of androgen induction of sebocyte differentiation. Dermatology. 1998;196(1):43–46. doi: 10.1159/000017864.
  • Trivedi NR, Cong Z, Nelson AM, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126(9):2002–2009. doi: 10.1038/sj.jid.5700336.
  • Mastrofrancesco A, Ottaviani M, Cardinali G, et al. Pharmacological PPARgamma modulation regulates sebogenesis and inflammation in SZ95 human sebocytes. Biochem Pharmacol. 2017;138:96–106. doi: 10.1016/j.bcp.2017.04.030.
  • Dozsa A, Dezso B, Toth BI, et al. PPARgamma-mediated and arachidonic acid-dependent signaling is involved in differentiation and lipid production of human sebocytes. J Invest Dermatol. 2014;134(4):910–920. doi: 10.1038/jid.2013.413.
  • Picardo M, Cardinali C, La Placa M, et al. Efficacy and safety of N-acetyl-GED-0507-34-LEVO gel in patients with moderate-to severe facial acne vulgaris: a phase IIb randomized double-blind, vehicle-controlled trial. Br J Dermatol. 2022;187(4):507–514. doi: 10.1111/bjd.21663.
  • Smith RN, Braue A, Varigos GA, et al. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci. 2008;50(1):41–52. doi: 10.1016/j.jdermsci.2007.11.005.
  • Kwon HH, Yoon JY, Hong JS, et al. Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial. Acta Derm Venereol. 2012;92(3):241–246. doi: 10.2340/00015555-1346.
  • Burris J, Rietkerk W, Shikany JM, et al. Differences in dietary glycemic load and hormones in New York city adults with no and moderate/severe acne. J Acad Nutr Diet. 2017;117(9):1375–1383. doi: 10.1016/j.jand.2017.03.024.
  • Burris J, Rietkerk W, Woolf K. Relationships of self-reported dietary factors and perceived acne severity in a cohort of New York young adults. J Acad Nutr Diet. 2014;114(3):384–392. doi: 10.1016/j.jand.2013.11.010.
  • Solanki AD, Solanki DKB, Banker KK, et al. Role of insulin resistance in patients of acne vulgaris and hirsutism in the Western part of India- a cross-sectional study. Indian Dermatol Online J. 2023;14(1):38–43. doi: 10.4103/idoj.idoj_326_22.
  • Gruszczyńska M, Sadowska-Przytocka A, Szybiak W, et al. Insulin resistance in patients with acne vulgaris. Biomedicines. 2023;11(8):2294. doi: 10.3390/biomedicines11082294.
  • Del Prete M, Mauriello MC, Faggiano A, et al. Insulin resistance and acne: a new risk factor for men? Endocrine. 2012;42(3):555–560. doi: 10.1007/s12020-012-9647-6.
  • AbdElneam AI, Al-Dhubaibi MS, Bahaj SS, et al. Apo B-48 gene expression and low-density lipoprotein as a factor for increased insulin resistance and severity of acne. Gene. 2023;885:147703. doi: 10.1016/j.gene.2023.147703.
  • Kim H, Moon SY, Sohn MY, et al. Insulin-Like growth factor-1 increases the expression of inflammatory biomarkers and sebum production in cultured sebocytes. Ann Dermatol. 2017;29(1):20–25. doi: 10.5021/ad.2017.29.1.20.
  • El-Tahlawi S, Ezzat Mohammad N, Mohamed El-Amir A, et al. Survivin and insulin-like growth factor-I: potential role in the pathogenesis of acne and post-acne scar. Scars Burn Heal. 2019;5:2059513118818031. doi: 10.1177/2059513118818031.
  • Guertler A, Volsky A, Eijkenboom Q, et al. Dietary patterns in acne and rosacea patients-a controlled study and comprehensive analysis. Nutrients. 2023;15(20):4405. doi: 10.3390/nu15204405.
  • Bertolani M, Rodighiero E, Saleri R, et al. The influence of mediterranean diet in acne pathogenesis and the correlation with insulin-like growth factor-1 serum levels: implications and results. Dermatol Reports. 2022;14(1):9143. doi: 10.4081/dr.2022.9143.
  • Burris J, Shikany JM, Rietkerk W, et al. A low glycemic index and glycemic load diet decreases insulin-like growth factor-1 among adults with moderate and severe acne: a short-duration, 2-week randomized controlled trial. J Acad Nutr Diet. 2018;118(10):1874–1885. doi: 10.1016/j.jand.2018.02.009.
  • Sadati MS, Yazdanpanah N, Shahriarirad R, et al. Efficacy of metformin vs. doxycycline in treating acne vulgaris: an assessor-blinded, add-on, randomized, controlled clinical trial. J Cosmet Dermatol. 2023;22(10):2816–2823. doi: 10.1111/jocd.15785.
  • Albalat W, Darwish H, Abd-Elaal WH, et al. The potential role of insulin-like growth factor 1 in acne vulgaris and its correlation with the clinical response before and after treatment with metformin. J Cosmet Dermatol. 2022;21(11):6209–6214. doi: 10.1111/jocd.15210.
  • Borzyszkowska D, Niedzielska M, Kozłowski M, et al. Evaluation of hormonal factors in acne vulgaris and the course of acne vulgaris treatment with contraceptive-based therapies in young adult women. Cells. 2022;11(24):4078. doi: 10.3390/cells11244078.
  • Zhang R, Zhou L, Lv M, et al. The relevant of sex hormone levels and acne grades in patients with acne vulgaris: a cross-sectional study in Beijing. Clin Cosmet Investig Dermatol. 2022;15:2211–2219. doi: 10.2147/CCID.S385376.
  • Sardana K, Bansal P, Sharma LK, et al. A study comparing the clinical and hormonal profile of late onset and persistent acne in adult females. Int J Dermatol. 2020;59(4):428–433. doi: 10.1111/ijd.14748.
  • Bansal P, Sardana K, Sharma L, et al. A prospective study examining isolated acne and acne with hyperandrogenic signs in adult females. J Dermatolog Treat. 2021;32(7):752–755. doi: 10.1080/09546634.2019.1708245.
  • Shrestha S. Correlation of hormonal profile and lipid levels with female adult acne in a tertiary care center of Nepal. J Nepal Health Res Counc. 2018;16(2):222–227. doi: 10.33314/jnhrc.v16i2.1178.
  • Cappel M, Mauger D, Thiboutot D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch Dermatol. 2005;141(3):333–338. doi: 10.1001/archderm.141.3.333.
  • Thiboutot D, Gilliland K, Light J, et al. Androgen metabolism in sebaceous glands from subjects with and without acne. Arch Dermatol. 1999;135(9):1041–1045. doi: 10.1001/archderm.135.9.1041.
  • Davio A, Woolcock H, Nanba AT, et al. Sex differences in 11-oxygenated androgen patterns across adulthood. J Clin Endocrinol Metab. 2020;105(8):e2921–e2929. doi: 10.1210/clinem/dgaa343.
  • Khunger N, Kumar C. A clinico-epidemiological study of adult acne: is it different from adolescent acne? Indian J Dermatol Venereol Leprol. 2012;78(3):335–341. doi: 10.4103/0378-6323.95450.
  • Geller L, Rosen J, Frankel A, et al. Perimenstrual flare of adult acne. J Clin Aesthet Dermatol. 2014;7(8):30–34.
  • Stoll S, Shalita AR, Webster GF, et al. The effect of the menstrual cycle on acne. J Am Acad Dermatol. 2001;45(6):957–960. doi: 10.1067/mjd.2001.117382.
  • George RM, Sridharan R. Factors aggravating or precipitating acne in Indian adults: a hospital-based study of 110 cases. Indian J Dermatol. 2018;63(4):328–331. doi: 10.4103/ijd.IJD_565_17.
  • Sansone G, Reisner RM. Differential rates of conversion of testosterone to dihydrotestosterone in acne and in normal human skin–a possible pathogenic factor in acne. J Invest Dermatol. 1971;56(5):366–372. doi: 10.1111/1523-1747.ep12261252.
  • Rajender S, Carlus SJ, Bansal SK, et al. Androgen receptor CAG repeats length polymorphism and the risk of polycystic ovarian syndrome (PCOS). PLOS One. 2013;8(10):e75709. doi: 10.1371/journal.pone.0075709.
  • Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994;22(15):3181–3186. doi: 10.1093/nar/22.15.3181.
  • Sawaya ME, Shalita AR. Androgen receptor polymorphisms (CAG repeat lengths) in androgenetic alopecia, hirsutism, and acne. J Cutan Med Surg. 1998;3(1):9–15. doi: 10.1177/120347549800300103.
  • Yang T, Wu WJ, Tian LM, et al. The associations of androgen-related genes CYP21A2 and CYP19A1 with severe acne vulgaris in patients from southwest China. Clin Cosmet Investig Dermatol. 2021;14:313–331. doi: 10.2147/CCID.S293171.
  • Zhao B, Lei L, Kagawa N, et al. Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J Biol Chem. 2012;287(13):10613–10622. doi: 10.1074/jbc.M111.323501.
  • Charmandari E, Merke DP, Negro PJ, et al. Endocrinologic and psychologic evaluation of 21-hydroxylase deficiency carriers and matched normal subjects: evidence for physical and/or psychologic vulnerability to stress. J Clin Endocrinol Metab. 2004;89(5):2228–2236. doi: 10.1210/jc.2003-031322.
  • Nordenström A, Svensson J, Lajic S, et al. Carriers of a classic CYP21A2 mutation have reduced mortality: a population-based national cohort study. J Clin Endocrinol Metab. 2019;104(12):6148–6154. doi: 10.1210/jc.2019-01199.
  • Altinkilic EM, Du Toit T, Sakin O, et al. The serum steroid signature of PCOS hints at the involvement of novel pathways for excess androgen biosynthesis. J Steroid Biochem Mol Biol. 2023;233:106366. doi: 10.1016/j.jsbmb.2023.106366.
  • Ackerman CM, Lowe LP, Lee H, et al. Ethnic variation in allele distribution of the androgen receptor (AR) (CAG)n repeat. J Androl. 2012;33(2):210–215. doi: 10.2164/jandrol.111.013391.
  • Wang C, Christenson P, Swerdloff R. Editorial: clinical relevance of racial and ethnic differences in sex steroids. J Clin Endocrinol Metab. 2007;92(7):2433–2435. doi: 10.1210/jc.2007-1085.
  • Sevagamoorthy A, Sockler P, Akoh C, et al. Racial and ethnic diversity of US participants in clinical trials for acne, atopic dermatitis, and psoriasis: a comprehensive review. J Dermatolog Treat. 2022;33(8):3086–3097. doi: 10.1080/09546634.2022.2114783.
  • Mazzetti A, Moro L, Gerloni M, et al. Pharmacokinetic profile, safety, and tolerability of clascoterone (cortexolone 17-alpha propionate, CB-03-01) topical cream, 1% in subjects with acne vulgaris: an open-label phase 2a study. J Drugs Dermatol. 2019;18(6):563.
  • US Food and Drug Administration, Center for Drug Evaluation and Research. Clascoterone cream 1% NDA 213433 multidisciplinary review and evaluation. 2019. https://www.fda.gov/media/142578/download.
  • ALDACTONE® (spironolactone). Prescribing information. Pfizer Labs; 2022. www.accessdata.fda.gov.
  • Ayatollahi A, Samadi A, Bahmanjahromi A, et al. Efficacy and safety of topical spironolactone 5% cream in the treatment of acne: a pilot study. Health Sci Rep. 2021;4(3):e317. doi: 10.1002/hsr2.317.
  • Rehan ST, Khan Z, Abbas S, et al. Role of topical spironolactone in the treatment of acne: a systematic review of clinical trials-does this therapy open a path towards favorable outcomes? J Dermatol. 2023;50(2):166–174. doi: 10.1111/1346-8138.16637.
  • Huang CY, Chang IJ, Bolick N, et al. Comparative efficacy of pharmacological treatments for acne vulgaris: a network meta-analysis of 221 randomized controlled trials. Ann Fam Med. 2023;21(4):358–369. doi: 10.1370/afm.2995.
  • Eichenfield L, Hebert A, Gold LS, et al. Open-label, long-term extension study to evaluate the safety of clascoterone (CB-03-01) cream, 1% twice daily, in patients with acne vulgaris. J Am Acad Dermatol. 2020;83(2):477–485. doi: 10.1016/j.jaad.2020.04.087.
  • Ferraboschi P, Legnani L, Celasco G, et al. A full conformational characterization of antiandrogen cortexolone-17α-propionate and related compounds through theoretical calculations and nuclear magnetic resonance spectroscopy. MedChemComm. 2014;5(7):904–914. doi: 10.1039/C4MD00049H.
  • Marks DH, Prasad S, De Souza B, et al. Topical antiandrogen therapies for androgenetic alopecia and acne vulgaris. Am J Clin Dermatol. 2020;21(2):245–254. doi: 10.1007/s40257-019-00493-z.
  • Sun HY, Sebaratnam DF. Clascoterone as a novel treatment for androgenetic alopecia. Clin Exp Dermatol. 2020;45(7):913–914. doi: 10.1111/ced.14292.