130
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Taraxasterol enhanced bladder cancer cells radiosensitivity via inhibiting the COX-2/PGE2/JAK2/STAT3/MMP pathway

, , , & ORCID Icon
Pages 791-801 | Received 19 Jul 2023, Accepted 23 Feb 2024, Published online: 05 Mar 2024

References

  • Ahmadi H, Duddalwar V, Daneshmand S. 2021. Diagnosis and staging of bladder cancer. Hematol Oncol Clin North Am. 35(3):531–541. doi:10.1016/j.hoc.2021.02.004
  • Al-Maghrabi B, Gomaa W, Abdelwahed M, Al-Maghrabi J. 2019. Increased COX-2 immunostaining in urothelial carcinoma of the urinary bladder is associated with invasiveness and poor prognosis. Anal Cell Pathol. 2019:5026939. doi:10.1155/2019/5026939
  • Bao T, Ke Y, Wang Y, Wang W, Li Y, Wang Y, Kui X, Zhou Q, Zhou H, Zhang C, et al. 2018. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression. J Mol Med. 96(7):661–672. doi:10.1007/s00109-018-1652-7
  • Cheki M, Yahyapour R, Farhood B, Rezaeyan A, Shabeeb D, Amini P, Rezapoor S, Najafi M. 2018. COX-2 in radiotherapy: a potential target for radioprotection and radiosensitization. Curr Mol Pharmacol. 11(3):173–183. doi:10.2174/1874467211666180219102520
  • Chen W, Li J, Li C, Fan HN, Zhang J, Zhu JS. 2020. Network pharmacology-based identification of the antitumor effects of taraxasterol in gastric cancer. Int J Immunopathol Pharmacol. 34:2058738420933107. doi:10.1177/2058738420933107
  • Cook PJ, Thomas R, Kingsley PJ, Shimizu F, Montrose DC, Marnett LJ, Tabar VS, Dannenberg AJ, Benezra R. 2016. Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma. Neuro Oncol. 18(10):1379–1389. doi:10.1093/neuonc/now049
  • Dobruch J, Oszczudłowski M. 2021. bladder cancer: current challenges and future directions. Medicina. 57(8):749. doi:10.3390/medicina57080749
  • Ge B, Sang R, Wang W, Yan K, Yu Y, Kong L, Yu M, Liu X, Zhang X. 2023. Protection of taraxasterol against acetaminophen-induced liver injury elucidated through network pharmacology and in vitro and in vivo experiments. Phytomedicine. 116:154872. doi:10.1016/j.phymed.2023.154872
  • Hashemi GN, Najafi M, Salehi E, Farhood B, Mortezaee K. 2019. Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 234(5):5683–5699. doi:10.1002/jcp.27411
  • He X, Smith SE, Chen S, Li H, Wu D, Meneses-Giles PI, Wang Y, Hembree M, Yi K, Zhao X, et al. 2021. Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche. Cell Rep. 36(10):109674. doi:10.1016/j.celrep.2021.109674
  • Jiao F, Tan Z, Yu Z, Zhou B, Meng L, Shi X. 2022. The phytochemical and pharmacological profile of taraxasterol. Front Pharmacol. 13:927365. doi:10.3389/fphar.2022.927365
  • King L, Christie D, Arora D, Anoopkumar-Dukie S. 2020. Cyclooxygenase-2 inhibitors delay relapse and reduce prostate specific antigen (PSA) velocity in patients treated with radiotherapy for nonmetastatic prostate cancer: a pilot study. Prostate Int. 8(1):34–40. doi:10.1016/j.prnil.2019.10.004
  • Kobayashi A, Konishi T. 2018. Radiation quality effects alteration in COX-2 pathway to trigger radiation-induced bystander response in A549 lung carcinoma cells. J Radiat Res. 59(6):754–759. doi:10.1093/jrr/rry065
  • Kuipers GK, Slotman BJ, Wedekind LE, Stoter TR, Berg J, Sminia P, Lafleur MV. 2007. Radiosensitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int J Radiat Biol. 83(10):677–685. doi:10.1080/09553000701558985
  • Li H, Qiu Z, Li F, Wang C. 2017. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 14(5):5865–5870. doi:10.3892/ol.2017.6924
  • Li Y, Chen Y, Sun-Waterhouse D. 2022. The potential of dandelion in the fight against gastrointestinal diseases: a review. J Ethnopharmacol. 293:115272. doi:10.1016/j.jep.2022.115272
  • Lin F, Luo J, Gao W, Wu J, Shao Z, Wang Z, Meng J, Ou Z, Yang G. 2013. COX-2 promotes breast cancer cell radioresistance via p38/MAPK-mediated cellular anti-apoptosis and invasiveness. Tumour Biol. 34(5):2817–2826. doi:10.1007/s13277-013-0840-x
  • Liu X, Ji Q, Ye N, Sui H, Zhou L, Zhu H, Fan Z, Cai J, Li Q. 2015. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PLOS One. 10(5):e123478. doi:10.1371/journal.pone.0123478
  • Mao G, Yao Y, Kong Z. 2018. Long term exposure to gamma‑rays induces radioresistance and enhances the migration ability of bladder cancer cells. Mol Med Rep. 18(6):5834–5840.
  • Najafi M, Mortezaee K, Majidpoor J. 2019. Cancer stem cell (CSC) resistance drivers. Life Sci. 234:116781. doi:10.1016/j.lfs.2019.116781
  • Nissen SE, Yeomans ND, Solomon DH, Lüscher TF, Libby P, Husni ME, Graham DY, Borer JS, Wisniewski LM, Wolski KE, et al. 2016. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med. 375(26):2519–2529. doi:10.1056/NEJMoa1611593
  • Ohneseit PA, Krebiehl G, Dittmann K, Kehlbach R, Rodemann HP. 2007. Inhibition of cyclooxygenase-2 activity by celecoxib does not lead to radiosensitization of human prostate cancer cells in vitro. Radiother Oncol. 82(2):229–238. doi:10.1016/j.radonc.2006.11.018
  • Park SY, Lee CJ, Choi JH, Kim JH, Kim JW, Kim JY, Nam JS. 2019. The JAK2/STAT3/CCND2 axis promotes colorectal cancer stem cell persistence and radioresistance. J Exp Clin Cancer Res. 38(1):399. doi:10.1186/s13046-019-1405-7
  • Rempe RG, Hartz AMS, Bauer B. 2016. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 36(9):1481–1507. doi:10.1177/0271678X16655551
  • Ren M, McGowan E, Li Y, Zhu X, Lu X, Zhu Z, Lin Y, He S. 2019. Saikosaponin-d suppresses COX2 through p-STAT3/C/EBPbeta signaling pathway in liver cancer: a novel mechanism of action. Front Pharmacol. 10:623. doi:10.3389/fphar.2019.00623
  • Scheau C, Badarau IA, Costache R, Caruntu C, Mihai GL, Didilescu AC, Constantin C, Neagu M. 2019. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol. 2019:9423907. doi:10.1155/2019/9423907
  • Shi X, Feng D, Wei W. 2021. A systematic review and meta-analysis protocol of chemoablation vs. transurethral resection of bladder tumor in patients with non-muscle-invasive bladder cancer. Front Surg. 8:753547. doi:10.3389/fsurg.2021.753547
  • Shimura T. 2017. Targeting the AKT/cyclin D1 pathway to overcome intrinsic and acquired radioresistance of tumors for effective radiotherapy. Int J Radiat Biol. 93(4):381–385. doi:10.1080/09553002.2016.1257832
  • Steinauer KK, Gibbs I, Ning S, French JN, Armstrong J, Knox SJ. 2000. Radiation induces upregulation of cyclooxygenase-2 (COX-2) protein in PC-3 cells. Int J Radiat Oncol Biol Phys. 48(2):325–328. doi:10.1016/s0360-3016(00)00671-4
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71(3):209–249. doi:10.3322/caac.21660
  • Wang F, Ma X, Mao G, Zhang X, Kong Z. 2021. STAT3 enhances radiation-induced tumor migration, invasion and stem-like properties of bladder cancer. Mol Med Rep. 23(1):87. doi:10.3892/mmr.2020.11728
  • Wang M, Sun X, Xin H, Wen Z, Cheng Y. 2022. SPP1 promotes radiation resistance through JAK2/STAT3 pathway in esophageal carcinoma. Cancer Med. 11(23):4526–4543. doi:10.1002/cam4.4840
  • Wülfing C, Eltze E, von Struensee D, Wülfing P, Hertle L, Piechota H. 2004. Cyclooxygenase-2 expression in bladder cancer: correlation with poor outcome after chemotherapy. Eur Urol. 45(1):46–52. doi:10.1016/j.eururo.2003.08.007
  • Xu X, Wang X, Fu B, Meng L, Lang B. 2015. Differentially expressed genes and microRNAs in bladder carcinoma cell line 5637 and T24 detected by RNA sequencing. Int J Clin Exp Pathol. 8(10):12678–12687.
  • Xu XT, Hu WT, Zhou JY, Tu Y. 2017. Celecoxib enhances the radiosensitivity of HCT116 cells in a COX-2 independent manner by up-regulating BCCIP. Am J Transl Res. 9(3):1088–1100.
  • Zhang X, Wang Q, Zhang R, Kong Z. 2023. DAB2IP-knocking down resulted in radio-resistance of breast cancer cells is associated with increased hypoxia and vasculogenic mimicry formation. Int J Radiat Biol. 99(10):1595–1606. doi:10.1080/09553002.2023.2194390

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.