Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 13, 2018 - Issue 2
3,534
Views
0
CrossRef citations to date
0
Altmetric
HIDA 7: Life/Defect Assessment and Failures in High Temperature Power Plant

On the development of creep damage constitutive equations: a modified hyperbolic sine law for minimum creep strain rate and stress and creep fracture criteria based on cavity area fraction along grain boundaries

ORCID Icon, & ORCID Icon
Pages 323-332 | Received 16 Jun 2017, Accepted 03 Oct 2017, Published online: 17 Nov 2017

References

  • Lee JS, Armaki HG, Maruyama K, et al. Causes of breakdown of creep strength in 9Cr–1.8 W–0.5Mo–VNb steel. Mater Sci Eng A. 2006;428:270–275.10.1016/j.msea.2006.05.010
  • Yin YF, Faulkner RG. Continuum damage mechanics modelling based on simulations of microstructural evolution kinetics. Mater Sci Technol. 2006;22:929–936.10.1179/174328406X102426
  • Dyson BF. Use of CDM in materials modelling and component creep life prediction. J Press Vessels Technol. 2000;122:281–296.10.1115/1.556185
  • Yang X, Xu Q, Lu ZY. The development and validation of the creep damage constitutive equations for P91 alloy. In: Proceedings of the 2013 World Congress in Computer Science and Computer Engineering and Application. CSREA Press. 2013; p. 121–127. ISBN 1-60132-238-0.
  • Basirat M, Shrestha T, Potirniche GP, et al. A study of the creep behavior of modified 9Cr–1Mo steel using continuum-damage modeling. Int J Plast. 2012;37:95–107.10.1016/j.ijplas.2012.04.004
  • Xu Q, Yang X, Lu Z. On the development of creep damage constitutive equations, keynote presentation. HIDA-7: Life/defect assessment & failures in high temperature industrial structures; 2015 May 15–17; Portsmouth: Portsmouth University.
  • Xu Q, Lu Z, Wang X. Damage modelling: the current state and the latest progress on the development of creep damage constitutive equations for high Cr steels. Mater High Temp. 2017;34(3):229–237. ISSN 0960-3409.10.1080/09603409.2017.1289613
  • Cane B. Interrelationship between creep deformation and creep rupture in 2.25 Cr–1Mo steel. Met Sci. 1979;13(5):287–294.10.1179/03063453.1979.11674139
  • Xu QH. Development of advanced creep damage constitutive equations for low Cr alloy under long-term service [ doctor thesis]. Huddersfield University; 2016. http://eprints.hud.ac.uk/27858/1/27_AAFinal_thesis_Qihua_Xu_2016_1.pdf.
  • Parker J. Creep behaviour of low alloy steel weldments. Int J Press Vessels Pip. 1995;63(1):55–62.10.1016/0308-0161(94)00051-J
  • Creep and rupture data of heat resistant steels, National Institute for Materials Science (NIMS). http://smds.nims.go.jp/creep/index_en.html.
  • Gupta C, Toda H, Schlacher C, et al. Study of creep cavitation behavior in tempered martensitic steel using synchrotron micro-tomography and serial sectioning techniques. Mater Sci Eng A. 2013;564:525–538.10.1016/j.msea.2012.12.002
  • Dyson B, McLean M. Microstructural evolution and its effects on the creep performance of high temperature alloys. In: Strang A, Cawley J, Greenwood GW, editors. Microstructural stability of creep resistant alloys for high temperature plant applications. 1997. p. 371–393.
  • Gorash, Y. Development of a creep-damage model for non-isothermal long-term strength analysis of high-temperature components operating in a wide stress range [Doctor thesis], 2008, Zentrum für Ingenieurwissenschaften der Martin-Luther-Universität Halle-Wittenberg verteidigt am 21.07.2008. https://sundoc.bibliothek.uni-halle.de/diss-online/08/08H154/of_index.htm
  • Bailey RW. Creep of steel under simple and compound stress. Engineering. 1930;121:129–265.
  • Norton FH. The creep of steel at high temperature. New York (NY): McGraw-Hill Book; 1929.
  • Naumenko K, Altenbach H. Modelling of creep for structural analysis. Berlin: Springer-Verlag; 2007.10.1007/978-3-540-70839-1
  • Naumenko K, Altenbach H, Gorash Y. Creep analysis with a stress range dependent constitutive model. Arch Appl Mech. 2009;79:619–630.10.1007/s00419-008-0287-5
  • Riedel H. Fracture at high temperatures. Berlin: Springer Verlag; 1987.10.1007/978-3-642-82961-1
  • Sket F, Dzieciol K, Borbely A, et al. Microtomography investigation of damage in E911 steel after long term creep. Mater Sci Eng A. 2010;528:103–111.10.1016/j.msea.2010.07.029
  • Renversade L, Ruoff H, Maile K, et al. Microtomographic assessment of damage in P91 and E911 after long-term creep. Int J Mater Res. 2014;105:621–627.10.3139/146.111056