413
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of active surface deformation using PSInSAR technique of the Central Himalayan region

ORCID Icon, , , ORCID Icon, , , , & show all
Article: 2302415 | Received 25 Feb 2022, Accepted 02 Jan 2024, Published online: 25 Jan 2024

References

  • Ader T, Avouac JP, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka Genrich J, Thomas M, Chanard K, Sapkota SN, Rajaure S, et al. 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J Geophys Res. 117(B4):B04403. doi:10.1029/2011JB009071.
  • Aitchison JC, Ali JR, Davis AM. 2007. When and where did India and Asia collide? J Geophys Res. 112(B5):B05423. doi:10.1029/2006JB004706.
  • Aki K. 1965. Maximum likelihood estimates of b in the formula logN = a-bM and its confidence limits. Bull Earthq Res Inst Univ Toky. 43:237–239.
  • Ambraseys N, Bilham R. 2000. A note on the Kangra Ms= 7.8 earthquake of 4 April 1905. Curr Sci. 79(1):45–50.
  • Ambraseys N, Douglas J. 2004. Magnitude calibration of north Indian earthquakes. Geophys J Int. 159(1):165–206. doi:10.1111/j.1365-246X.2004.02323.x.
  • Auden JB. 1935. Traverses in the Himalaya. Rec Geol Soc India. 69:123–167.
  • Avouac JP. 2003. Mountain building, erosion and the seismic cycle in the Nepal Himalaya. Adv Geophys. 46:1–80.
  • Banerjee P, Bürgmann R. 2002. Convergence across the northwest Himalaya from GPS measurements. Geophys Res Lett. 29(13):30–1-30-4. doi:10.1029/2002GL015184.
  • Banerjee P, Bürgmann R, Nagarajan B, Apel E. 2008. Intraplate deformation of the Indian subcontinent. Geophys Res Lett. 35(18):1–5. doi:10.1029/2008GL035468.
  • Bansal BK, Verma M. 2013. Science and technology-based earthquake risk reduction strategies: the Indian scenario. Acta Geophys. 61(4):808–821. doi:10.2478/s11600-013-0105-5.
  • Bender B. 1983. Maximum likelihood estimation of b values for magnitude grouped data. Bull Seismol Soc Am. 73(3):831–851. doi:10.1785/BSSA0730030831.
  • Berthet T, Hetenyi G, Cattin R, Sapkota SN, Champollion C, Kandel T, Doerflinger E, Drukpa D, Lechmann S, Bonnin M. 2013. Lateral uniformity of India Plate strength over central and eastern Nepal, Geophys. J. Int. 195(3):1481–1493. doi:10.1093/gji/ggt357.
  • Bilham R. 2005. A flying start, then a slow slip, Scienc. 308:1126–1127. doi:10.1126/science.1113363.
  • Bilham R. 2019. Himalayan earthquakes: a review of historical seismicity and early 21st-century slip potential. Geol Soc Lond Spec Publ. 483(1):423–482.
  • Bilham R, Blume F, Bendick R, Gaur VK. 1998. Geodetic constraints on the translation and deformation of India: implications for future great Himalayan earthquakes. Curr Sci. 74:213–229.
  • Bilham R, Gaur VK. 2000. Geodetic contribution to the study of seismotectonics in India. Curr Sci. 79:1259–1269.
  • Bilham R, Gaur V, Molnar P. 2001. Himalayan seismic hazard. Science 293(5534):1442–1444. doi:10.1126/science.1062584.
  • Bilham R, Larson K, Freymueller J. 1997. GPS measurements of present-day convergence across the Nepal Himalaya. Nature. 386:61–64. doi:10.1038/386061a0.
  • Bilham R, Wallace K. 2005. Future Mw >8 earthquakes in the Himalaya: implications from the 26 Dec 2004 Mw =9.0 earthquake on India’s eastern plate margin. Geological Survey of India Special Publication; p. 85.
  • Borgeaud M, Wegmuller U. 1997. On the use of ERS SAR interferometry for the retrieval of geo- and bio-physical information. In: Guyenne, T.D., Danesy, D. (Eds.), Proceedings of the ‘Fringe 96’ workshopheld in Zurich, Switzerland, 30 September–2 October 1996. European Space Agency ERS SAR interferometry, pp. 83–94.
  • Caldwell WB, Klemperer SL, Lawrence JF, Rai SS, Ashish A. 2013. Characterizing the Main Himalayan Thrust in the Garhwal Himalaya India with receiver function CCP stacking. Earth Plan. Sci Lett. 367:15–27. doi:10.1016/j.epsl.2013.02.009.
  • Carnec C, Delacourt C. 2000. Three years of mining subsidence monitored by SAR interferometry, near Gradane. France J. Appl. Geophys. 43(1):43–54. doi:10.1016/S0926-9851(99)00032-4.
  • Cheng S, Perissin D, Lin H, Chen F. 2012. Atmospheric delay analysis from GPS meteorology and InSAR APS. J Atmos Solar-Terres Phys. 86:71–82. doi:10.1016/j.jastp.2012.06.005.
  • Crosetto M, Monserrat O, González MC, Devanthéry N, Crippa B. 2016. Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens. 115:78–89. doi:10.1016/j.isprsjprs.2015.10.011.
  • Dal Zilio L, Jolivet R, Van Dinther Y. 2020. Segmentation of the Main Himalayan Thrust illuminated by Bayesian inference of interseismic coupling. Geophys Res Lett. 47(4):e2019GL086424. doi:10.1029/2019GL086424.
  • Dumka RK, Kotlia BS, Kothyari GC, Paikrey J, Dimri S. 2018. Detection of high and moderate crustal strain zones in Uttarakhand Himalaya, India. Acta Geod Geophys. 53(3):503–521. doi:10.1007/s40328-018-0226-z.
  • Dumka RK, Kotlia BS, Kumar K, Satyal G. 2014. Quantification of crustal strain rate in Kumaun Himalaya (India) using GPS measurements of crustal deformation. Himal Geol. 35(2):146–155.
  • Dumka RK, Suribabu D, Narain P, Kothyari GC, Taloor AK, Prajapati S. 2022. PSInSAR and GNSS derived deformation study in the west part of Narmada Son Lineament (NSL), Western India. Quater Sci Adv. 4:100035. doi:10.1016/j.qsa.2021.100035.
  • Ferretti A, Prati C, Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sens. 38(5):2202–2212. doi:10.1109/36.868878.
  • Ferretti A, Prati C, Rocca F. 2001. Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sens. 39(1):8–20. doi:10.1109/36.898661.
  • Gansser A. 1964. Geology of the Himalayas. London (UK): Interscience Publisher; p. 273.
  • Ghavri S, Jade S. 2021. Seismic potential of megathrust in the Kumaun‑Garhwal region of NW Himalaya: implications from geodetic and seismic strain rates. Int J Earth Sci (Geol Rundsch). 110(4):1439–1452. doi:10.1007/s00531-021-02023-x.
  • Godano C, Lippiello E, de Arcangelis L. 2014. Variability of the b value in the Gutenberg–Richter distribution. Geophys J Int. 199(3):1765–1771. doi:10.1093/gji/ggu359.
  • Gutenberg R, Richter CF. 1944. Frequency of earthquakes in California. Bull Seismol Soc Am. 34(4):185–188. doi:10.1785/BSSA0340040185.
  • Hammer P, Berthet T, Hetenyi G, Cattin R, Drukpa D, Chophel J, Lechmann S, Moigne NL, Champollion C, Doerflinger E. 2013. Flexure of the India plate underneath the Bhutan Himalaya, Geophys. Res. Lett. 40:4225–4230. doi:10.1002/grl.50793.
  • Helm A, Gansser A. 1939. Central Himalaya: geological observations of Swiss expedition 1936. Reprinted. Delhi (India): Hindustan Publishing Corporation; p. 246.
  • Hilley GE, Burgmann R, Ferretti A, Novali F, Rocca F. 2004. Dynamic of slow-moving landslides from permanent scatterer analysis. Science. 304(5679):1952–1955. doi:10.1126/science.109882.
  • Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull. 112(3):324–350. doi:10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2.
  • Hooper A. 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett. 35(16). doi:10.1029/2008GL034654.
  • Hooper A, Zebker H, Segall P, Kampes B. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett. 31(23)L23611:1–5. doi:10.1029/2004GL021737.
  • Jade S. 2004. Estimates of plate velocity and crustal deformation in the Indian subcontinent using GPS geodesy. Curr Sci. 86:1343–1348.
  • Jade S, Mukul M, Bhattacharyya AK, Vijayan MSM, Saigeetha J, Kumar A, Tiwari RP, Kumar A, Kalita S, Sahu SC, et al. 2007. Estimates of inter seismic deformation in Northeast India from GPS measurements. Earth Planet Sci Lett. 263(3-4):221–234. doi:10.1016/j.epsl.2007.08.031.
  • Jade S, Mukul M, Gaur VK, Kumar K, Shrungeshwar TS, Satyal GS, Dumka RK, Jagannathan S, Ananda MB, Kumar PD, et al. 2014. Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995–2008 GPS time series. J Geod. 88(6):539–557. doi:10.1007/s00190-014-0702-3.
  • Jade S, Shrungeshwara TS, Kumar K, Choudhury P, Dumka RK, Bhu H. 2017. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Sci Rep. 7(1):1–16. doi:10.1038/s41598-017-11697-w.
  • Jain AK. 1971. Stratigraphy and tectonics of Lesser Himalayan region of Uttarkashi, Garwhal, Himalaya. Himalayan Geol. 1:25–58.
  • Johnson MRW. 1986. The structural evolution of the Kumaun Lesser Himalaya. In: Saklani, PS, editor. Current trends in geology. IX. Himalayan thrust and evolution. Vol. 3. New Delhi, India: Today's and Tomorrow's Publishers; p. 27–39.
  • Joshi M, Kothyari GC. 2010. Assessment of tectonic activity in a seismically locked segment of Himachal Himalaya. Int J Remote Sens. 31(3):681–689. doi:10.1080/01431160902894509.
  • Joshi M, Kothyari GC, Malik K, Taloor AK. 2022. Response of drainage to tectonics and PS-InSAR derived deformation study in Bilaspur, northwestern Himalaya, India. Geod Geodyn. 13(3):205–218. doi:10.1016/j.geog.2021.06.005.
  • Jouanne F, Mugnier JL, Pandey MR, Gamond JF, Le Fort P, Serrurier L, Vigny C, Avouac JP. 1999. Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett. 26(13):1933–1936. doi:10.1029/1999GL900416.
  • Kandregula RS, Kothyari GC, Swamy KV, Taloor AK, Lakhote A, Chauhan G, Thakkar MG, Pathak V, Malik K, 2021. Estimation of regional surface deformation post the 2001 Bhuj earthquake in the Kachchh region, Western India using RADAR interferometry. Geocarto Int. 23:5249–5277. doi:10.1080/10106049.2021.1899299.
  • Kayal JR. 1996. Precursor seismicity, foreshocks and aftershocks of the Uttarkashi earthquake of October 20, 1991 at Garhwal Himalaya. Tectonophysics. 263(1-4):339–345. doi:10.1016/S0040-1951(97)81488-6.
  • Kayal JR, Das V, Ghosh U. 2012. An appraisal of the 2001 Bhuj Earthquake (Mw 7.7, India) source zone: fractal dimension and b-value mapping of the aftershock sequence. Pure Appl Geophys. 169(12):2127–2138. doi:10.1007/s00024-012-0503-7.
  • Kayal JR, Sagina R, Singh OP, Chakraborty PK, Karunakar G. 2003. Aftershock of the 1999 Chamoli earthquake and seismotectonic structure of the Garhwal Himalaya. Bull Seism Soc Am. 93(1):109–117. doi:10.1785/0119990139.
  • Khattri KN, Zeng Y, Anderson JG, Brune J. 1994. Inversion of strong motion waveforms for source slip function of 1991 Uttarkashi earthquake. Him Geol. 5:163–191.
  • Kothyari GC. 2010. Quaternary reactivation of North Almora Thrust (NAT) in Central Kumaun: implication to neotectonic rejuvenation, Lesser Himalaya, Uttaranchal [PhD thesis]. Germany: LAP-LIMBERT Academic Publication House. No 9783-8383-71406-2.
  • Kothyari GC. 2014. Morphometric analysis of tectonically active Pindar and Saryu River basins: central Kumaun Himalaya. ZfG. 59(4):421–442. doi:10.1127/zfg/2014/0162.
  • Kothyari GC, Joshi N, Taloor AK, Malik K, Dumka R, Sati SP, Sundriyal YP. 2021. Reconstruction of active surface deformation in the Rishi Ganga basin, Central Himalaya using P SInSAR: A feedback towards understanding the 7th February 2021 Flash Flood. Adv in Space Res. 69(4):1894–1914. doi:10.1016/j.asr.2021.07.002.
  • Kothyari GC, Juyal N. 2013. Implications of fossil valleys and associated epigenetic gorges in parts of Central Himalaya. Curr Sci. 105(3):383–388.
  • Kothyari GC, Kandregula RS, Luirei K. 2017b. Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya. Geomorphology. 285:272–286. doi:10.1016/j.geomorph.2017.02.021.
  • Kothyari GC, Kandregula RS, Luirei K. 2018. Response: discussion of ‘Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya’. Geomorphology. 301:153–166. doi:10.1016/j.geomorph.2017.09.014.
  • Kothyari GC, Kotlia BS, Talukdar R, Pant CC, Joshi M. 2020a. Evidences of neotectonic activity along Goriganga River, Higher Central Kumaun Himalaya, India. Geol J. 55(9):6123–6146. doi:10.1002/gj.3791.
  • Kothyari GC, Luirei K. 2016. Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: central Kumaun Himalaya. Geomorphology. 268:159–176. doi:10.1016/j.geomorph.2016.06.010.
  • Kothyari GC, Pant PD. 2008. Evidences of active deformation in the northwestern part of Almora in Kumaun Lesser Himalaya: a geomorphic perspective. J Geol Soc India. 72:353–364.
  • Kothyari GC, Pant PD, Talukdar R, Taloor A, Kandregula RS, Rawat S. 2020b. Lateral variations in sedimentation records along the strike length of North Almora Thrust: central Kumaun Himalaya. Quat Sci Adv. 2:100009. doi:10.1016/j.qsa.2020.100009.
  • Kothyari GC, Shukla AD, Juyal N. 2017a. Reconstruction of late Quaternary climate and seismicity using fluvial landforms in Pindar River valley Central Himalaya, Uttarakhand, India. Quat Int. 443:248–264. doi:10.1016/j.quaint.2016.06.001.
  • Kumar R, Gupta SC, Kumar A. 2015. Determination and identification of focal mechanism solutions for Himalayan earthquakes from waveform inversion employing ISOLA software. Nat Hazards. 76(2):1163–1181. doi:10.1007/s11069-014-1540-6.
  • Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R. 2006. Palaeoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys. Res. 111:B03304. doi:10.1029/2004JB003309.
  • Lakhote A, Kothyari GC, Patidar AK, Changmai J, Borgohain R, Choudhury T, Um JS. 2023. Assessment of active ground subsidence in the Dibrugarh and Digboi areas of Assam, Northeast India, using the PSInSAR technique. Remote Sens. 15(20):4963. doi:10.3390/rs15204963.
  • Ludwig R, Hellwich O, Strunz GRA, Eder K. 2000. Applications of digital elevation models from SAR interferometry for hydrologic modeling. Photogrammetrie Fernrenkundung. Geoinf. 2:81–94.
  • Luirei K, Pant PD, Kothyari GC. 2006. Geomorphic evidence of neotectonic movements in Dharchula area, northeast Kumaun: a perspective of recent tectonic activity. J Geol Soc India. 67:92–100.
  • Mahesh P, Gupta S, Saikia U, Rai SS. 2015. Seismotectonics and crustal stress field in the Kumaon-Garhwal Himalaya. Tectonophysics. 655:124–138. doi:10.1016/j.tecto.2015.05.016.
  • Mandal P, Rastogi BK, Gupta HK. 2000. Recent Indian earthquake. Curr Sci. 79:1334–1346.
  • Massonnet D, Briole P, Arnaud A. 1995. Deflation of MountEtna monitored by spaceborne radar interferometry, Nature. 375:567–570.
  • Massonnet D, Feigl KL, Rossi M, Adragna F. 1994. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature 369(6477):227–230.
  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T. 1993. The displacement field of the Landers earthquake is mapped by radar interferometry. Nature. 364(6433):138–142.
  • Massonnet D, Thatcher W, Vadon H. 1996. Detection of post-seismic fault zone collapse following the Landers earthquake. Nature. 382(6592):612–616.
  • Misra RC, Sharma RP. 1967. Geology of the Devi-Dhura Area, Almora, U.P. J Geol Soc India. 8:110–118.
  • Mogi K. 1962. Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bull Earth Res Inst Univ Tokyo. 40:831–853.
  • Mohr JJ, Madsen SN. 2000. The impact of curved satellite tracts on SAR focusin In Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium. Honolulu, Hawaii, 1:87–92. doi:10.1109/IGARSS.2000.860430.
  • Molnar P. 1990. A review of the seismicity and the rates of the active underthrusting and the deformation of the Himalaya. J Himalayan Geol. 1:131–154.
  • Molnar P, Lyon-Caent H. 1989. Fault-plane solutions of earthquakes and active tectonics of the Tibetan plateau and its margins. Geophys J Int. 99(1):123–154. doi:10.1111/j.1365-246X.1989.tb02020.x.
  • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science. 189(4201):419–426. doi:10.1126/science.189.4201.419.
  • Negi SS, Paul A. 2015. Space-time clustering properties of seismicity in the Garhwal-Kumaun Himalaya, India. Himalayan Geol. 36(1):91–101.
  • Negi SS, Paul A, Cesca S, Kriegerowski M, Mahesh P, Gupta S, Kamal. 2017. Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: constraints from regional waveform inversion and array beam modeling. Tectonophysics. 712-713: 45–63. doi:10.1016/j.tecto.2017.05.007.
  • Pandey MR, Molnar P. 1988. The distribution of intensity of the Bihar-Nepal earthquake of 15 January 1934 and bounds on the extent of the rupture zone. J Geol Soc Nepal. 5:22–44.
  • Pandey P, Pandey AK. 2004. Soft-sediment deformation features in the meizoseismic region of 1999 Chamoli earthquake in Himalaya and their significance. Himalayan Geol. 25:79–80.
  • Pant CC, Paul A. 2007. Recent trends in seismicity of Uttaranchal. J Geol Soc India. 70:619–626.
  • Pant PD, Goel OP, Joshi M. 1992. Neotectonic movement in the Loharkhet area, district Almora, Kumaun Himalaya. J Geol Soc India. 40:245–252.
  • Pant PD, Kothyari GC, Luirei K. 2007. Geomorphological and geological investigation of neotectonic activity of Saryu River Fault (SRF), a part of North Almora Thrust (NAT) in Seraghat-Basoli Area in Central Kumaun Himalaya. J Geol Soc India. 70(5):815.
  • Patriat P, Achache J. 1984. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature. 311(5987):615–621. doi:10.1038/311615a0.
  • Patidar AK, Maurya DM, Thakkar MG, Chamyal LS. 2007. Fluvial geomorphology and neotectonic activity based on field and GPR data, Katrol hill range, Kachchh, western India. Quaternary International. 159:74–92. doi:10.1016/j.quaint.2006.08.013.
  • Paul SK. 1998. Geology and tectonics of the Central Crystallines of northeastern Kumaon Himalayas, India. J Nepal Geol Soc. 18:151–167. doi:10.3126/jngs.v18i0.32249.
  • Paul A, Pant PD. 2007. Seismic hazard estimation in northeastern Kumaun Himalayas. Jour Geol Soc of In. 61:477–482.
  • Peltzer G, Cramp EF, King G. 1999. Evidence of the nonlinear elasticity of the crust from Mw 76 Manyi (Tibet) earthquake. Science. 286(5438):272–276. https://www.jstor.org/stable/2899685.
  • Peltzer G, Rosen P, Rogez F, Hudnut D. 1996. Postseismic rebound in the fault step-over caused by pore fluid flow. Science. 273(5279):1202–1204. doi:10.1126/science.273.5279.1202.
  • Perissin D. 2015. SARPROZ software manual. https://www.sarproz.com/software-manual.
  • Prasath RA, Paul A, Singh S. 2017. Upper crustal stress and seismotectonics of the Garhwal Himalaya using small-to-moderate earthquakes: implications to the local structures and free fluids. J Asian Earth Sci. 135:198–211. doi:10.1016/j.jseaes.2016.12.029.
  • Pudi RA, Joshi S, Martha TR, Upadhyay R, Pant CC. 2021. A comprehensive site response and site classification of the Garhwal-Kumaun Himalaya, Central Seismic Gap (CSG), India. J Earthquake Eng. 26(13):6803–6827. doi:10.1080/13632469.2021.1927901.
  • Rajendran CP, John B, Anandasabari K, Sanwal J, Rajendran K, Kumar P, Chopra S. 2018. On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya. Tectonophysics. 722:227–234. doi:10.1016/j.tecto.2017.11.012.
  • Rajendran CP, Rajendran K. 2005. The status of central seismic gap: a perspective based on the spatial and temporal aspects of the large Himalayan earthquakes. Tectonophysics. 395(1-2):19–39. doi:10.1016/j.tecto.2004.09.009.
  • Rajendran K, Rajendran CP, Jain SK, Murty CVR, Arlekar N. 2000. The Chamoli earthquake, Garhwal Himalaya: field observations and implications for seismic hazard. Curr Sci. 78:45–51.
  • Rajendran CP, Tejpal S, Malay M, Thakkar MG, Kothyari GC, John B, Rajendran K. 2020. Paleoseismological studies in India (2016–2020): Status and prospects. Proc Indian Natn Sci Acad. 86(1):585–607.
  • Rastogi BK. 2000. Chamoli earthquake of magnitude 6.6 on 29 March 1999. J Geol Soc Ind. 55:505–514.
  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E. 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett. 236(3-4):773–796. doi:10.1016/j.epsl.2005.05.034.
  • Rodriguez E, Martin. 1992. Theory and design of interferometric SARs. Proc. IEEE 139(2):147–159. doi:10.1049/ip-f-2.1992.0018.
  • Rout, MM, Das J, Das K, Das R. 2015. Probabilistic seismic hazard assessment of NW and central Himalayas and the adjoining region. J Earth Syst Sci. 124(3): 577–586. doi:10.1007/s12040-015-0565-x.
  • Rowley DB. 1996. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett. 145(1-4):1–13. doi:10.1016/S0012-821X(96)00201-4.
  • Saklani PS, Bahuguna VK. 1983. Main Central Thrust zone and associated imbricated structures in Chhatera area, Garhwal Hmalaya. In: Saklani PS, editor. Himalayan shears. New Delhi (India): Today & Tomorrow’s Publishers; p. 1–9.
  • Salvi S, Atzori S, Tolomei C, Allievi J, Ferretti A, Rocca F, Prati, Stramondo S, Feuillet N. 2004. Inflation rate of the Colli Albani volcanic complex retrieved by the permanent scatterers SAR interferometry technique. Geophy Res Lett. 31(L12606). doi:10.1029/2004GL020253.
  • Scholz CH. 1968. The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes. Bull Seismol Soc Am. 58(1):399–415. doi:10.1785/BSSA0580010399.
  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Tingdong L, Xuchang X, Jan MQ, Thakur VC, et al. 1987. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull. 98(6):678–701. doi:10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2.
  • Seeber L, Armbruster J. 1981. Great detachment earthquakes along the Himalayan Arc and long-term forecasting. In: Simpson DW, Richards PG, editors. Earthquake prediction: an international review (Maurice Ewing Series). Vol. 4. American Geophysical Union; p. 259–277. doi:10.1029/me004p0259.
  • Sinha AK. 1989. Geology of the Higher Central Himalaya. Chichester (UK): John Willy & Sons; p. 236.
  • Srivastava HN, Verma M, Bansal BK, Sutar AK. 2013. Discriminatory characteristics of seismic gaps in Himalaya. Geomatics Nat Hazards Risk. 6(3):224–242. doi:10.1080/19475705.2013.839483.
  • Srivastava P, Mitra G. 1994. Thrust geometries and deep structure of the Outer and Lesser Himalaya, Kumaon and Garhwal (India): implications for evolution of the Himalayan fold-and-thrust belt. Tectonics. 13(1):89–109. doi:10.1029/93TC01130.
  • Stevens VL, Avouac JP. 2015. Interseismic coupling on the main Himalayan thrust. Geophys Res Lett. 42(14):5828–5837. doi:10.1002/2015GL064845.
  • Stevens VL, Avouac JP. 2016. Millenary Mw>9.0 earthquakes required by geodetic strain in the Himalaya. Geophys Res Lett. 43(3):1118–1123. doi:10.1002/2015GL067336.
  • Suribabu D, Dumka RK, Kothyari GC, Swamy KV, Prajapati S. 2022. Identification of crustal deformation in the Saurashtra region, western India: insights from PSI and GNSS derived investigation. Acta Geod et Geophy. 57:639–659. doi:10.1007/s40328-022-00399-z.
  • Talukdar R, Kothyari GC, Pant CC. 2020. Evaluation of neotectonic variability along major Himalayan thrusts within the Kali River basin using geomorphic markers, Central Kumaun Himalaya, India. Geol. Jour. 55(1):821–844. doi:10.1002/gj.3452.
  • Thakur VC. 1992. Geology of the western Himalaya. Oxford (UK): Pergmon Press; p. 355.
  • Tiwari P, Maurya DM, Shaikh M, Patidar AK. 2021. Surface trace of the active Katrol Hill Fault and estimation of paleo-earthquake magnitude for seismic hazard, western India. Engineering Geology. 295. doi:10.1016/j.enggeo.2021.106416.
  • Urbancic TI, Trifu CI, Long JM, Young RP. 1992. Space-time correlations of b-values with stress release. Pure Appl Geophys. 139(3-4):449–462. doi:10.1007/BF00879946.
  • Utsu T. 1965. A method for determining the value of b in a formula logN = a-bM showing the magnitude frequency for earthquakes. Geophys Bull Hokkaido Univ. 13:99–103.
  • Valdiya KS. 1976. Structural set-up of the Kumaun Lesser Himalya. Himalaya Proc Intern Colloq Geol Ecol Himal. 268:235–286.
  • Valdiya KS. 1979. An outline of the structural set-up of Kumaun Himalaya. J Geol Soc India. 20:145–157.
  • Valdiya KS. 1980. Geology of Kumaon Lesser Himalaya. Dehradun (India): Wadia Institute of Himalayan Geology.
  • Valdiya KS. 1981. The tectonics of the central sector of the Himalaya. In: Delany FN, Gupta HK, editors. Zagos Hindkush-Himalaya-geodynamic evolution. Washington (DC): American Geophysical Union; p. 87–100.
  • Valdiya KS. 1988. Tectonic evolution of the central sector of the Himalaya. Philos Trans R Soc Lond Ser A. 326:151–175.
  • Valdiya KS. 2001. Reactivation of terrain-defining boundary thrusts in central sector of the Himalaya: implications. Curr Sci. 81:1418–1431.
  • Valdiya KS. 2005. Trans Himadri Fault: tectonics of a detachment system in Central sector of Himalaya, India. J Geol Soc India. 65:537–552.
  • Valdiya KS, Paul SK, Chandra T, Bhakuni SS, Upadhyay RC. 1999. Tectonic and lithological characterization of Himadri (Great Himalaya) between Kali and Yamuna rivers, Central Himalaya. Himalayan Geol. 20:1–17.
  • Valdiya KS, Rana RS, Sharma PK, Dey P. 1992. Active Himalayan Frontal Fault, Ian Boundary Thrust and Ramgarh Thrust in southern Kumaun. J Geol Soc India. 40:509–528.
  • Wang L, Barbot S. 2023. Three-dimentional kinematics of the India-Eurasia collision. Commun Earth Environ. 4(1):164. doi:10.1038/s43247-023-00815-4.
  • Wang Q, Zhang PZ, Freymueller JT, Bilham R, Larson KM, Lai X, You X, Niu Z, Wu J, Li Y, et al. 2001. Present day crustal defromation in China constrained by Global Positioning System measurements. Science. 294(5542):574–577. doi:10.1126/science.1063647.
  • Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol. 174:103–138. doi:10.1016/j.enggeo.2014.03.003.
  • Wesnousky SG, Kumar S, Mohindra R, Thakur VC. 1999. Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics. 18(6):967–976. doi:10.1029/1999TC900026.
  • Wiemer S. 2001. A software package to analyze seismicity: ZMAP. Seismol Res Lett. 72(3):373–382. doi:10.1785/gssrl.72.3.373.
  • Wiemer S, Benoit J. 1996. Mapping the b value anomaly at 100 km depth in the Alaska and New Zealand subduction zones. Geophys Res Lett. 23(13):1557–1560. doi:10.1029/96GL01233.
  • Wiemer S, Wyss M. 1997. Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times. J Geophys Res. 102(B7):15115–15128. doi:10.1029/97JB00726.
  • Wobus CW, Whipple K, Hodges KV. 2006. Neotectonics of the Central Nepalese Himalaya: constraints from geomorphology detrital 40Ar/39Ar thermochronology and thermal modelling. Tectonophysics. 25(4):1–18. doi:10.1029/2005TC001935.
  • Woessner J, Wiemer S. 2005. Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am. 95(2):684–698. doi:10.1785/0120040007.
  • Wyss M. 1973. Towards a physical understanding of the earthquake frequency distribution. Geophys J R Astron. Soc. 31(4):341–359. doi:10.1111/j.1365-246X.1973.tb06506.x.
  • Yadav RK, Gahalaut VK, Bansal AK, Sati SP, Catherine J, Gautam P, Kumar K, Rana N. 2019. Strong seismic coupling underneath Garhwal-Kumaun region, NW Himalaya, India. Earth Planet Sci. Lett. 506:8–14. doi:10.1016/j.epsl.2018.10.023.
  • Yazici BV, Gormus ET. 2020. Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: a case study in Artvin dam area, in Turkey. Geocarto International. 37(8):2293–2311. doi:10.1080/10106049.2020.1818854.
  • Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev. 76(1-2):1–131. doi:10.1016/j.earscirev.2005.05.004.
  • Zhang P-Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geol. 32(9):809–812. doi:10.1130/G20554.1.
  • Zou W, Chen L. 2019. Determination of optimum tie point interval for SAR image coregistration by decomposing autocorrelation coefficient. IEEE Trans Geosci Remote Sens. 57(7):5067–5084. doi:10.1109/TGRS.2019.2896383.