643
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soil erosion and sediment yield estimation in a tropical monsoon dominated river basin using GIS-based models

, , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2309181 | Received 09 Nov 2023, Accepted 18 Jan 2024, Published online: 08 Feb 2024

References

  • Aher PD, Adinarayana J, Gorantiwar SD. 2014. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: a remote sensing and GIS approach. J Hydrol. 511:850–860. doi:10.1016/j.jhydrol.2014.02.028.
  • Altaf S, Meraj G, Romshoo SA. 2014. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environ Monit Assess. 186(12):8391–8412. doi:10.1007/s10661-014-4012-2.
  • Ameri AA, Pourghasemi HR, Cerda A. 2018. Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: a comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Sci Total Environ. 613–614:1385–1400. doi:10.1016/j.scitotenv.2017.09.210.
  • Aneseyee AB, Elias E, Soromessa T, Feyisa GL. 2020. Land use/land cover change effect on SE and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci Total Environ. 728:138776. doi:10.1016/j.scitotenv.2020.138776.
  • Arnoldus HMJ. 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. In: De Boodt M, Gabriels D, editors. Assessment of erosion. New York: John Wiley and Sons; p.127–132.
  • Bag R,Mondal I,Dehbozorgi M,Bank SP,Das DN,Bandyopadhyay J,Pham QB,Fadhil Al-Quraishi AM,Nguyen XC. 2022. Modelling and mapping of soil erosion susceptibility using machine learning in a tropical hot sub-humid environment. J. Cleaner Prod. 364:132428 doi:10.1016/j.jclepro.2022.132428.
  • Balthazar V,Vanacker V,Girma A,Poesen J,Golla S. 2013. Human impact on sediment fluxes within the Blue Nile and Atbara River basins. Geomorphology. 180–181:231–241. doi:10.1016/j.geomorph.2012.10.013.
  • Beasley DB, Huggins LF, Monke A. 1980. ANSWERS: a model for watershed planning. Trans ASAE. 23(4):938–944.
  • Behera M, Sena DR, Mandal U, Kashyap PS, Dash SS. 2020. Integrated GIS-based RUSLE approach for quantification of potential SE under future climate change scenarios. Environ Monit Assess. 192(11):733. doi:10.1007/s10661-020-08688-2.
  • Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J. 2005. Estimation of global river transport of sediments and associated particulate C, N, and P. Global Biogeochem Cycle. 19(4). doi:10.1029/2005GB002453.
  • Bhattacharya RK, Chatterjee ND, Das K. 2020. Sub-basin prioritization for assessment of SE susceptibility in Kangsabati, a plateau basin: a comparison between MCDM and SWAT models. Sci Total Environ. 734:139474. doi:10.1016/j.scitotenv.2020.139474.
  • Bhattacharyya R, Ghosh B, Mishra P, Mandal B, Rao C, Sarkar D, Das K, Anil K, Lalitha M, Hati K, et al. 2015. Soil degradation in India: challenges and potential solutions. Sustainability. 7(4):3528–3570. doi:10.3390/su7043528.
  • Brooks A, Spencer J, Borombovits D, Pietsch T, Olley J. 2014. Measured hillslope erosion rates in the wet-dry tropics of Cape York, northern Australia: part 2, RUSLE-based modeling significantly over-predicts hillslope sediment production. Catena. 122:1–17. doi:10.1016/j.catena.2014.06.002.
  • Chatterjee S, Krishna AP, Sharma AP. 2014. Geospatial assessment of SE vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ Earth Sci. 71(1):357–374. doi:10.1007/s12665-013-2439-3.
  • Chitsaz N, Banihabib ME. 2015. Comparison of different multi criteria decision-making models in prioritizing flood management alternatives. Water Resour Manage. 29(8):2503–2525. doi:10.1007/s11269-015-0954-6.
  • Chorley RJ. 1969. The drainage basin as the fundamental geomorphic unit. In: Chorley RJ, editor. Water, earth and man, London: Methuen; p. 77–100.
  • Chaudhary RS, Sharma PD. 1998. Erosion hazard assessment and treatment prioritization of Giri River catchment, North Western Himalayas. Indian J Soil Conserv. 26(1):6–11.
  • CRU. 2022. CRU TS v4.06 Data Variables: PRE. University of East Anglia. [accessed 15 Jul 2022]. https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/cruts.2205201912.v4.06/pre/.
  • Das A, Remesan R, Chakraborty S, Gupta AK. 2022. Investigation of human-induced land use dynamics in a representative catchment on the Chota Nagpur Plateau, India: a spatiotemporal application of SE modeling with connectivity index studies. CATENA. 217:106524. doi:10.1016/j.catena.2022.106524.
  • Das D. 2014. Identification of erosion prone areas by morphometric analysis using GIS. J Inst Eng India Ser A. 95(1):61–74. doi:10.1007/s40030-014-0069-8.
  • De Jong SM, Paracchini ML, Bertolo F, Folving S, Megier J, De Roo APJ. 1999. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena. 37(3-4):291–308. doi:10.1016/S0341-8162(99)00038-7.
  • Demir Y, Meral A, Demir AD. 2022. Estimation of soil losses in Çapakcur watershed (Bingol, Turkey) using RUSLE method and comparison of predicted soil losses with sediment yield. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 25(Ek Sayı 2):523–537. doi:10.18016/ksutarimdoga.vi.1059631.
  • Desmet PJJ, Govers G. 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv. 51(5):427–433.
  • Diodato N, Bellocchi G. 2007. EstimaIg monthly (R) USLE climate input in a Mediterranean region using limited data. J Hydrol. 345(3-4):224–236. doi:10.1016/j.jhydrol.2007.08.008.
  • Dutta D, Das S, Kundu A, Taj A. 2015. SE risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Model Earth Syst Environ. 1(4):1–9. doi:10.1007/s40808-015-0034-1.
  • Elnashar A, Zeng H, Wu B, Fenta AA, Nabil M, Duerler R. 2021. SE assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework. Sci Total Environ. 793:148466. doi:10.1016/j.scitotenv.2021.148466.
  • FAO. 2022. FAO Soils Portal, FAO/UNESCO Soil Map of the World. Accessed 20 Aug 2022. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/.
  • Farhan Y, Nawaiseh S. 2015. Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ Earth Sci. 74(6):4649–4669. doi:10.1007/s12665-015-4430-7.
  • Fujaco MAG, Leite MGP, Neves AHCJ. 2016. A GIS-based tool for estimating soil loss in agricultural river basins. REM Int Eng J. 69(4):417–424. doi:10.1590/0370-44672015690197.
  • Ganasri BP, Ramesh H. 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci Front. 7(6):953–961. doi:10.1016/j.gsf.2015.10.007.
  • García-Ruiz JM, Beguería S, Nadal-Romero E, González-Hidalgo JC, Lana-Renault N, Sanjuán Y. 2015. A meta-analysis of soil erosion rates across the world. Geomorphology. 239:160–173. doi:10.1016/j.geomorph.2015.03.008.
  • García-Soriano D, Quesada-Román A, Zamorano-Orozco JJ. 2020. Geomorphological hazards susceptibility in high-density urban areas: a case study of Mexico City. J South Am Earth Sci. 102:102667. doi:10.1016/j.jsames.2020.102667.
  • Gayen A, Pourghasemi HR, Saha S, Keesstra S, Bai S. 2019. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Sci Total Environ. 668:124–138. doi:10.1016/j.scitotenv.2019.02.436.
  • Gessesse B, Bewket W, Bräuning A. 2015. Model‐based characterization and monitoring of runoff and SE in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degrad Dev. 26(7):711–724. doi:10.1002/ldr.2276.
  • Gravelius H. 1914. Grundriß der gesamten Gewässerkunde, Band 1: Flußkunde, Göschen Verlag. 1, 1.
  • Garde RJ, Kothari UC. 1987. Sediment yield estimation. J Irrig Power (India). 44(3):97–123.
  • Horton RE. 1932. Drainage-basin characteristics. Trans Am Geophys Union. 13:350–361.
  • Horton RE. 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc America Bull. 56(3):275–370. doi:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
  • Hudson NW. 1981. Soil conservation. London: Batsford.
  • Jain MK, Das D. 2010. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour Manage. 24(10):2091–2112. doi:10.1007/s11269-009-9540-0.
  • John J, Rosamma CN, Thampi SG. 2022. Assessment and prediction of SE and its impact on the storage capacity of reservoirs in the Bharathapuzha River Basin, India. Environ Model Assess. 27(1):77–103. doi:10.1007/s10666-021-09786-2.
  • Jose CS, Das DC. 1982. Geomorphic prediction models for sediment production rate and intensive priorities of watersheds in Mayurakshi catchment. In: Proc. of International Symp. On Hydrological Aspects of Mountainous Watersheds, School of Hydrology, UOR, Roorkee (Vol. 1, p. 15–23).
  • Kadam AK, Jaweed TH, Kale SS, Umrikar BN, Sankhua RN. 2019. Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: a remote sensing and GIS approach. Geomatics Nat Hazards Risk. 10(1):986–1006. doi:10.1080/19475705.2018.1555189.
  • Kirkby MJ. 1987. Modelling some influences of SE, landslides and valley gradient on drainage density and hollow development. Catena. Supp (Giessen) (10):1–14.
  • Knisel WG. 1980. CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems (No. 26). United States: Department of Agriculture, Science and Education Administration.
  • Kouli M, Soupios P, Vallianatos F. 2009. Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ Geol. 57(3):483–497. doi:10.1007/s00254-008-1318-9.
  • Kulimushi LC,Choudhari P,Mubalama LK,Banswe GT. 2021. GIS and remote sensing-based assessment of soil erosion risk using RUSLE model in South-Kivu province, eastern, Democratic Republic of Congo. Geomatics Nat. Hazards Risk. 12(1):961–987. doi:10.1080/19475705.2021.1906759.
  • Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability. 7(5):5875–5895. doi:10.3390/su7055875.
  • Lin J, Guan Q, Tian J, Wang Q, Tan Z, Li Z, Wang N. 2020. Assessing temporal trends of SE and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model. Catena. 195:104756. doi:10.1016/j.catena.2020.104756.
  • Lu XX, Ashmore P, Wang J. 2003. Sediment yield mapping in a large river basin: the Upper Yangtze, China. Environ Model Softw. 18(4):339–353. doi:10.1016/S1364-8152(02)00107-X.
  • Magesh NS,Chandrasekar N. 2016. Assessment of soil erosion and sediment yield in the Tamiraparani sub-basin, South India, using an automated RUSLE-SY model. Environ Earth Sci. 75(16). doi:10.1007/s12665-016-6010-x.
  • Mahala A. 2018. SE estimation using RUSLE and GIS techniques—a study of a plateau fringe region of tropical environment. Arab J Geosci. 11(13):1–18. doi:10.1007/s12517-018-3703-3.
  • Majhi A, Shaw R, Mallick K, Patel PP. 2021. Towards improved USLE-based SE modelling in India: a review of prevalent pitfalls and implementation of exemplar methods. Earth Sci Rev. 221:103786. doi:10.1016/j.earscirev.2021.103786.
  • McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD. 1987. Revised slope steepness factor for the Universal Soil Loss Equation. Trans ASAE. 30(5):1387–1396.
  • Miller VC. 1953. A quantitative geomorphic study of drainage basin characteristics in the clinch mountain area virginia and tennessee, Defense Technical Information Center. 1, 1.
  • Mondal A, Khare D, Kundu S, Mukherjee S, Mukhopadhyay A, Mondal S. 2017. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs. Geosci Front. 8(3):425–436. doi:10.1016/j.gsf.2016.03.004.
  • Morgan RPC, Quinton JN, Rickson RJ. 1990. Structure of the SE prediction model for the European community. In Proceedings of International Symposium on Water Erosion, Sedimentation and Resource Conservation (Vol. 913).
  • Mukanov Y, Chen Y, Baisholanov S, Amanambu AC, Issanova G, Abenova A, Fang G, Abayev N. 2019. Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan. Acta Geophys. 67(3):921–938. doi:10.1007/s11600-019-00288-0.
  • Napoli M, Cecchi S, Orlandini S, Mugnai G, Zanchi CA. 2016. Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE. Catena. 145:246–256. doi:10.1016/j.catena.2016.06.018.
  • Nyesheja EM, Chen X, El-Tantawi AM, Karamage F, Mupenzi C, Nsengiyumva JB. 2019. Soil erosion assessment using RUSLE model in the Congo Nile Ridge region of Rwanda. Phys Geogr. 40(4):339–360. doi:10.1080/02723646.2018.1541706.
  • Pal S. 2016. Identification of SE vulnerable areas in Chandrabhaga river basin: a multi-criteria decision approach. Model Earth Syst Environ. 2(5):1–11. doi:10.1007/s40808-015-0052-z.
  • Pandey A, Gautam AK, Chowdary VM, Jha CS, Cerdà A. 2021. Uncertainty assessment in soil erosion modelling using RUSLE, multisource and multiresolution DEMs. J Indian Soc Remote Sens. 49(7):1689–1707. doi:10.1007/s12524-021-01351-4.
  • Prasannakumar V, Vijith H, Abinod S, Geetha NJGF. 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci Front. 3(2):209–215. doi:10.1016/j.gsf.2011.11.003.
  • Quesada-Román A, Campos-Durán D. 2022. Natural disaster risk inequalities in Central America. Papers Appl Geogr. 9(1):36–48. doi:10.1080/23754931.2022.2081814.
  • Quesada-Román A, Mata-Cambronero E. 2021. The geomorphic landscape of the Barva volcano, Costa Rica. Phys Geogr. 42(3):265–282. doi:10.1080/02723646.2020.1759762.
  • Quesada-Román A, Castro-Chacón JP, Boraschi SF. 2021. Geomorphology, land use, and environmental impacts in a densely populated urban catchment of Costa Rica. J South Am Earth Sci. 112:103560. doi:10.1016/j.jsames.2021.103560.
  • Rahman MR, Shi ZH, Chongfa C. 2009. SE hazard evaluation—an integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecol Modell. 220(13–14):1724–1734. doi:10.1016/j.ecolmodel.2009.04.004.
  • Rajbanshi J, Bhattacharya S. 2020. Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar river basin, India. J Hydrol. 587:124935. doi:10.1016/j.jhydrol.2020.124935.
  • Renard KG. 1997. Predicting SE by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, DC: United States Government Printing.
  • Renschler CS, Harbor J. 2002. Soil erosion assessment tools from point to regional scales—the role of geomorphologists in land management research and implementation. Geomorphology. 47(2-4):189–209. doi:10.1016/S0169-555X(02)00082-X.
  • Samanta RK, Bhunia GS, Shit PK. 2016. Spatial modelling of SE susceptibility mapping in lower basin of Subarnarekha river (India) based on geospatial techniques. Model Earth Syst Environ. 2(99):1–13. doi:10.1007/s40808-016-0170-2.
  • Schumm SA. 1956. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geol Soc America Bull. 67(5):597. doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
  • Senanayake S, Pradhan B, Huete A, Brennan J. 2022. Spatial modeling of SE hazards and crop diversity change with rainfall variation in the Central Highlands of Sri Lanka. Sci Total Environ. 806(Pt 2):150405. doi:10.1016/j.scitotenv.2021.150405.
  • Shamshad A, Azhari MN, Isa MA, Hussin WW, Parida BP. 2008. Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena. 72(3):423–432. doi:10.1016/j.catena.2007.08.002.
  • Shivhare N, Rahul AK, Omar PJ, Chauhan MS, Gaur S, Dikshit PKS, Dwivedi SB. 2018. Identification of critical SE prone areas and prioritization of micro-watersheds using geoinformatics techniques. Ecol Eng. 121:26–34. doi:10.1016/j.ecoleng.2017.09.004.
  • Singh G, Panda RK. 2017. Grid-cell based assessment of SE potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: a case study in the Kapgari watershed, India. Int Soil Water Conserv Res. 5(3):202–211. doi:10.1016/j.iswcr.2017.05.006.
  • Singh G, Chandra S, Babu R. 1981. Soil loss and prediction research in India. New York: Central Soil and Water Conservation Research Training Institute
  • Smith KG. 1950. Standards for grading texture of erosional topography. Am J Sci. 248(9):655–668. doi:10.2475/ajs.248.9.655.
  • Sofi MS, Rautela KS, Bhat SU, Rashid I, Kuniyal JC. 2021. Application of geomorphometric approach for the estimation of hydro-sedimentological flows and cation weathering rate: towards understanding the sustainable land use policy for the Sindh Basin, Kashmir Himalaya. Water Air Soil Pollut. 232(7):280. doi:10.1007/s11270-021-05217-w.
  • Strahler A. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geol Soc America Bull. 63(11):1117–1142. doi:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
  • Thomas J, Joseph S, Thrivikramji KP. 2018. Estimation of SE in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function. Int Soil Water Conserv Res. 6(2):111–122. doi:10.1016/j.iswcr.2017.12.001.
  • USGS. 2022. Earth Explorer, Science for a Changing World, United States Department of the Interior, USA. [accessed 10 Jun 2022]. https://earthexplorer.usgs.gov/.
  • Van der Knijff JM, Jones RJA, Montanarella L. 2000. SE risk: assessment in Europe. Belgium: European Commission.
  • Van Pelt RS, Hushmurodov SX, Baumhardt RL, Chappell A, Nearing MA, Polyakov VO, Strack JE. 2017. The reduction of partitioned wind and water erosion by conservation agriculture. Catena. 148:160–167. doi:10.1016/j.catena.2016.07.004.
  • Vigiak O, Borselli L, Newham LTH, McInnes J, Roberts AM. 2012. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology. 138(1):74–88. doi:10.1016/j.geomorph.2011.08.026.
  • Wischmeier WH, Smith DD. 1978. Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Maryland: United States Department of Agriculture.
  • Zerihun M, Mohammedyasin MS, Sewnet D, Adem AA, Lakew M. 2018. Assessment of SE using RUSLE, GIS and remote sensing in NW Ethiopia. Geoderma Regional. 12:83–90. doi:10.1016/j.geodrs.2018.01.002.
  • Zhang S, Fan W, Li Y, Yi Y. 2017. The influence of changes in land use and landscape patterns on SE in a watershed. Sci Total Environ. 574:34–45. doi:10.1016/j.scitotenv.2016.09.024.
  • Zhang S, Lu XX, Sun H, Han J. 2011. Modeling catchment controls on organic carbon fluxes in a meso-scale mountainous river (Luodingjiang), China. Quat Int. 244(2):296–303. doi:10.1016/j.quaint.2010.11.008.
  • Zhou M, Deng J, Lin Y, Belete M, Wang K, Comber A, Huang L, Gan M. 2019. Identifying the effects of land use change on sediment export: integrating sediment source and sediment delivery in the Qiantang River Basin, China. Sci Total Environ. 686:38–49. doi:10.1016/j.scitotenv.2019.05.336.
  • Zhou P, Luukkanen O, Tokola T, Nieminen J. 2008. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena. 75(3):319–325. doi:10.1016/j.catena.2008.07.010.