768
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A method for robust estimation of snow seasonality metrics from Landsat and Sentinel-2 time series data over Atlas Mountains scale using Google Earth Engine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Article: 2313001 | Received 09 Nov 2023, Accepted 26 Jan 2024, Published online: 24 Feb 2024

References

  • Baba MW, Boudhar A, Gascoin S, Hanich L, Marchane A, Chehbouni A. 2021. Assessment of MERRA-2 and ERA5 to model the snow water equivalent in the High Atlas (1981–2019). Water. 13(7):890. doi: 10.3390/w13070890.
  • Baillarin SJ, Meygret A, Dechoz C, Petrucci B, Lacherade S, Tremas T, Isola C, Martimort P, Spoto F. 2012. Sentinel-2 level 1 products and image processing performances. In IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE;p. 7003–7006. [accessed 2022 Dec 16]. doi: 10.1109/IGARSS.2012.6351959.
  • Bouamri H, Kinnard C, Boudhar A, Gascoin S, Hanich L, Chehbouni A. 2021. MODIS does not capture the spatial heterogeneity of snow cover induced by solar radiation. Front Earth Sci. 9:640250. doi: 10.3389/feart.2021.640250.
  • Boudhar A, Boulet G, Hanich L, Sicart JE, Chehbouni A. 2016. Energy fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas. Hydrol Sci J. 61(5):1–13. doi: 10.1080/02626667.2014.965173.
  • Boudhar A, Duchemin B, Hanich L, Chaponnière A, Maisongrande P, Boulet G. 2007. Snow covers dynamics analysis in the Moroccan High Atlas using SPOT-VEGETATION data. Sécheresse. 18:1–11.
  • Boudhar A, Duchemin B, Hanich L, Jarlan L, Chaponnière A, Maisongrande P, Boulet G, Chehbouni A. 2010. Long-term analysis of snow-covered area in the Moroccan High-Atlas through remote sensing. Int J Appl Earth Obs Geoinformation. 12: s 109–S115. doi: 10.1016/j.jag.2009.09.008.
  • Boudhar A, Hanich L, Boulet G, Duchemin B, Berjamy B, Chehbouni A. 2009. Evaluation of the Snowmelt Runoff Model in the Moroccan High Atlas Mountains using two snow-cover estimates. Hydrol Sci J. 54(6):1094–1113. doi: 10.1623/hysj.54.6.1094.
  • Bousbaa M, Htitiou A, Boudhar A, Eljabiri Y, Elyoussfi H, Bouamri H, Ouatiki H, Chehbouni A. 2022. High-resolution monitoring of the snow cover on the moroccan atlas through the spatio-temporal fusion of Landsat and Sentinel-2 images. Remote Sens. 14(22):5814. doi: 10.3390/rs14225814.
  • Brownlee J. 2020. A gentle introduction to threshold-moving for imbalanced classification. Mach Learn Mastery. [accessed 2021 Jul 5]. https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/.
  • Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ. 113(5):893–903. doi: 10.1016/j.rse.2009.01.007.
  • Chastain R, Housman I, Goldstein J, Finco M, Tenneson K. 2019. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM + top of atmosphere spectral characteristics over the conterminous United States. Remote Sens Environ. 221:274–285. doi: 10.1016/j.rse.2018.11.012.
  • Christopher SA, Gupta P. 2010. Satellite remote sensing of particulate matter air quality: the cloud-cover problem. J Air Waste Manag Assoc. 60(5):596–602. doi: 10.3155/1047-3289.60.5.596.
  • Claverie M, Ju J, Masek JG, Dungan JL, Vermote EF, Roger J-C, Skakun SV, Justice C. 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens Environ. 219:145–161. doi: 10.1016/j.rse.2018.09.002.
  • Du Z, Li W, Zhou D, Tian L, Ling F, Wang H, Gui Y, Sun B. 2014. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens Lett. 5(7):672–681. doi: 10.1080/2150704X.2014.960606.
  • Gascoin S, Grizonnet M, Bouchet M, Salgues G, Hagolle O. 2019. Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst Sci Data. 11(2):493–514. doi: 10.5194/essd-11-493-2019.
  • Gilboa G, Osher S. 2009. Nonlocal operators with applications to image processing. Multiscale Model Simul. 7(3):1005–1028. doi: 10.1137/070698592.
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27. doi: 10.1016/j.rse.2017.06.031.
  • Hall DK, Riggs GA. 2007. Accuracy assessment of the MODIS snow products. Hydrol. Processes. 21:1534–1547. doi: 10.1002/hyp.6715.
  • Hanich L, Chehbouni A, Gascoin S, Boudhar A, Jarlan L, Tramblay Y, Boulet G, Marchane A, Baba MW, Kinnard C, et al. 2022. Snow hydrology in the Moroccan Atlas Mountains. J Hydrol Reg Stud. 42:101101. doi: 10.1016/j.ejrh.2022.101101.
  • Hird J, DeLancey E, McDermid G, Kariyeva J. 2017. Google earth engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens. 9(12):1315. doi: 10.3390/rs9121315.
  • Htitiou A, Boudhar A, Chehbouni A, Benabdelouahab T. 2021. National-scale cropland mapping based on phenological metrics, environmental covariates, and machine learning on google earth engine. Remote Sens. 13(21):4378. doi: 10.3390/rs13214378.
  • Jackson RB, Carpenter SR, Dahm CN, Mcknight DM, Naiman RJ, Postel SL, Running SW. 2001. WATER IN A CHANGING WORLD. Ecol Appl. 11(4):19.
  • Kong D, Zhang Y, Gu X, Wang D. 2019. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 155:13–24. doi: 10.1016/j.isprsjprs.2019.06.014.
  • Kulkarni AV, Singh SK, Mathur P, Mishra VD. 2006. Algorithm to monitor snow cover using AWiFS data of RESOURCESAT‐1 for the Himalayan region. Int J Remote Sens. 27(12):2449–2457. doi: 10.1080/01431160500497820.
  • Li J, Roy DP. 2017. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 9(9):902. doi: 10.3390/rs9090902.
  • Li M, Zhu X, Li N, Pan Y. 2020. Gap-filling of a MODIS normalized difference snow index product based on the similar pixel selecting algorithm: a case study on the Qinghai–Tibetan Plateau. Remote Sens. 12(7):1077. doi: 10.3390/rs12071077.
  • López‐Moreno JI, Soubeyroux JM, Gascoin S, Alonso‐Gonzalez E, Durán‐Gómez N, Lafaysse M, Vernay M, Carmagnola C, Morin S. 2020. Long‐term trends (1958–2017) in snow cover duration and depth in the Pyrenees. Intl Journal of Climatology. 40(14):6122–6136. doi: 10.1002/joc.6571.
  • Ma Y, Wang L, Liu P, Ranjan R. 2015. Towards building a data-intensive index for big data computing – a case study of Remote Sensing data processing. Inf Sci. 319:171–188. doi: 10.1016/j.ins.2014.10.006.
  • Marchane A, Boudhar A, Baba MW, Hanich L, Chehbouni A. 2021. Snow lapse rate changes in the Atlas Mountain in Morocco based on MODIS time series during the period 2000–2016. Remote Sens. 13(17):3370. doi: 10.3390/rs13173370.
  • Marchane A, Jarlan L, Hanich L, Boudhar A, Gascoin S, Tavernier A, Filali N, Le Page M, Hagolle O, Berjamy B. 2015. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens Environ. 160:72–86. doi: 10.1016/j.rse.2015.01.002.
  • Marchane A, Tramblay Y, Hanich L, Ruelland D, Jarlan L. 2017. Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco). Hydrol Sci J. 62(6):979–995. doi: 10.1080/02626667.2017.1283042.
  • Mateo-García G, Gómez-Chova L, Amorós-López J, Muñoz-Marí J, Camps-Valls G. 2018. Multitemporal cloud masking in the google earth engine. Remote Sensing. 10(7):1079. doi: 10.3390/rs10071079.
  • Mityók ZK, Bolton DK, Coops NC, Berman EE, Senger S. 2018. Snow cover mapped daily at 30 meters resolution using a fusion of multi-temporal MODIS NDSI data and Landsat surface reflectance. Can J Remote Sens. 44(5):413–434. doi: 10.1080/07038992.2018.1538775.
  • Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: A review. ISPRS J Photogramm Remote Sens. 66(3):247–259. doi: 10.1016/j.isprsjprs.2010.11.001.
  • Nolin AW. 2010. Recent advances in remote sensing of seasonal snow. J Glaciol. 56(200):1141–1150. doi: 10.3189/002214311796406077.
  • Riggs GA, Hall DK, Salomonson VV. 1994. A snow index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer. In: Proc IGARSS 94 - 1994 IEEE Int Geosci Remote Sens Symp. Vol. 4. Pasadena, CA, USA: IEEE. p. 1942–1944. [accessed 2022 Dec 16]. doi: 10.1109/IGARSS.1994.399618.
  • Salminen M, Pulliainen J, Metsämäki S, Kontu A, Suokanerva H. 2009. The behaviour of snow and snow-free surface reflectance in boreal forests: implications to the performance of snow covered area monitoring. Remote Sens Environ. 113(5):907–918. doi: 10.1016/j.rse.2008.12.008.
  • Schilling J, Freier KP, Hertig E, Scheffran J. 2012. Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric Ecosyst Environ. 156:12–26. doi: 10.1016/j.agee.2012.04.021.
  • Shu H, Jiang S, Zhu X, Xu S, Tan X, Tian J, Xu YN, Chen J. 2022. Fusing or filling: which strategy can better reconstruct high-quality fine-resolution satellite time series? Sci Remote Sens. 5:100046. doi: 10.1016/j.srs.2022.100046.
  • Sibandze P, Mhangara P, Odindi J, Kganyago M. 2014. A comparison of Normalised Difference Snow Index (NDSI) and Normalised Difference Principal Component Snow Index (NDPCSI) techniques in distinguishing snow from related land cover types. SA J of Geomatics. 3(2):197. doi: 10.4314/sajg.v3i2.6.
  • Sproles E, Crumley R, Nolin A, Mar E, Moreno J. 2018. SnowCloudHydro—a new framework for forecasting streamflow in snowy, data-scarce regions. Remote Sens. 10(8):1276. doi: 10.3390/rs10081276.
  • Stillinger T, Roberts DA, Collar NM, Dozier J. 2019. Cloud masking for Landsat 8 and MODIS terra over snow‐covered terrain: error analysis and spectral similarity between snow and cloud. Water Resour Res. 55(7):6169–6184. doi: 10.1029/2019WR024932.
  • Studer S, Stöckli R, Appenzeller C, Vidale PL. 2007. A comparative study of satellite and ground-based phenology. Int J Biometeorol. 51(5):405–414. doi: 10.1007/s00484-006-0080-5.
  • Wang Q, Ma Y, Li J. 2023. Snow cover phenology in Xinjiang based on a novel method and MOD10A1 data. Remote Sens. 15: 1474. doi: 10.3390/rs15061474.
  • Wang X, Wang J, Che T, Huang X, Hao X, Li H. 2018. Snow cover mapping for complex mountainous forested environments based on a multi-index technique. IEEE J Sel Top Appl Earth Observ Remote Sens. 11(5):1433–1441. doi: 10.1109/JSTARS.2018.2810094.
  • Weinert HL. 2007. Efficient computation for Whittaker–Henderson smoothing. Comput Stat Data Anal. 52(2):959–974. doi: 10.1016/j.csda.2006.11.038.
  • Wu L, Li C, Xie X, Lv J, Zou S, Zhou X, Shen N. 2022. Land surface snow phenology based on an improved downscaling method in the Southern Gansu Plateau, China. Remote Sens. 14(12):2848. doi: 10.3390/rs14122848.
  • Xiao X, Moore B, Qin X, Shen Z, Boles S. 2002. Large-scale observations of alpine snow and ice cover in Asia: using multi-temporal VEGETATION sensor data. Int J Remote Sens. 23(11):2213–2228. doi: 10.1080/01431160110076180.
  • Xuejin T, Zhenni W, Xingmin M, Peng G, Guangju Z, Wenyi S, Chaojun G. 2019. Spatiotemporal changes in snow cover over China during 1960–2013. Atmospheric Res. 218:183–194. doi: 10.1016/j.atmosres.2018.11.018.
  • Yin D, Cao X, Chen X, Shao Y, Chen J. 2013. Comparison of automatic thresholding methods for snow-cover mapping using Landsat TM imagery. Int J Remote Sens. 34(19):6529–6538. doi: 10.1080/01431161.2013.803631.
  • Zhang L, Hu N. 2017. Roc analysis based condition indicator threshold optimization method. In: 2017 Progn Syst Health Manag Conf PHM-Harbin. Harbin, China: IEEE. p. 1–6. [accessed 2021 Jul 5] doi: 10.1109/PHM.2017.8079234.
  • Zhou J, Jia L, Menenti M, Gorte B. 2016. On the performance of remote sensing time series reconstruction methods – a spatial comparison. Remote Sens Environ. 187:367–384. doi: 10.1016/j.rse.2016.10.025.