411
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MFFNet: a building change detection method based on fusion of spectral and geometric information

, , , , , , , , & show all
Article: 2322053 | Received 21 Nov 2023, Accepted 16 Feb 2024, Published online: 14 Mar 2024

References

  • Bai T, Sun K, Deng S, Li D, Li W, Chen Y. 2018. Multi-scale hierarchical sampling change detection using Random Forest for high-resolution satellite imagery. Int J Remote Sens. 39(21):7523–7546. doi:10.1080/01431161.2018.1471542.
  • Bovolo F, Bruzzone L, Marconcini M. 2008. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Trans Geosci Remote Sens. 46(7):2070–2082. doi:10.1109/TGRS.2008.916643.
  • Chaabouni-Chouayakh H, Krauss T, d‘Angelo P, Reinartz P. 2010. 3D change detection inside urban areas using different digital surface models. Germany: Remote Sensing Technology Institute German Aerospace Center (DLR). https://elib.dlr.de/65901/1/ISPRSmy_paper.pdf.
  • Chaabouni-Chouayakh H, d'Angelo P, Krauss T, Reinartz P. 2011. Automatic urban area monitoring using digital surface models and shape features. 2011 Joint Urban Remote Sensing Event, Munich, Germany. 2011, pp. 85–88. IEEE. doi: 10.1109/JURSE.2011.5764725.
  • Chaabouni-Chouayakh H, Reinartz P. 2011. Towards automatic 3D change detection inside urban areas by combining height and shape information. PFG. 2011(4):205–217. doi:10.1127/1432-8364/2011/0083.
  • Chen B, Chen Z, Deng L, Duan Y, Zhou J. 2016. Building change detection with RGB-D map generated from UAV images. Neurocomputing. 208:350–364. doi:10.1016/j.neucom.2015.11.118.
  • Chen H, Qi Z, Shi Z. 2022. Remote sensing image change detection with transformers. IEEE Trans Geosci Remote Sens. 60:1–14. doi:10.1109/TGRS.2021.3095166.
  • Chen H, Shi Z. 2020. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 12(10):1662. doi:10.3390/rs12101662.
  • Chen H, Wu C, Du B, Zhang L, Wang L. 2020. Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network. IEEE Trans Geosci Remote Sens. 58(4):2848–2864. doi:10.1109/TGRS.2019.2956756.
  • Chen Z, Zhou Y, Wang B, Xu X, He N, Jin S, Jin S. 2022. EGDE-Net: a building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement. ISPRS J Photogramm Remote Sens. 191:203–222. doi:10.1016/j.isprsjprs.2022.07.016.
  • Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E. 2004. Review ArticleDigital change detection methods in ecosystem monitoring: a review. Int J Remote Sens. 25(9):1565–1596. doi:10.1080/0143116031000101675.
  • Daudt RC, Le Saux B, Boulch A. 2018. Fully convolutional siamese networks for change detection. 25th IEEE International Conference on Image Processing (ICIP); IEEE.
  • Désir C, Bernard S, Petitjean C, Heutte L. 2012. A random forest based approach for one class classification in medical imaging. Machine Learning in Medical Imaging: Third International Workshop, MLMI 2012, Held in Conjunction with MICCAI 2012, Oct 1; Nice, France: Springer.
  • Du S, Zhang Y, Qin R, Yang Z, Zou Z, Tang Y, Fan C. 2016. Building change detection using old aerial images and new LiDAR data. Remote Sens. 8(12):1030. doi:10.3390/rs8121030.
  • Fang S, Li K, Shao J, Li Z. 2022. SNUNet-CD: a densely connected Siamese network for change detection of VHR images. IEEE Geosci Remote Sens Lett. 19:1–5. doi:10.1109/LGRS.2021.3056416.
  • Feng X, Li P. 2019. Urban built-up area change detection using multi-band temporal texture and one-class random forest. 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp); IEEE.
  • Gedara W, Bandara C, Patel VM. 2022. A transformer-based siamese network for change detection. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium; IEEE.
  • Hafner S, Nascetti A, Azizpour H, Ban Y. 2022. Sentinel-1 and sentinel-2 data fusion for urban change detection using a dual stream u-net. IEEE Geosci Remote Sens Lett. 19:1–5. doi:10.1109/LGRS.2021.3119856.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • He Y, Chen S. 2019. Recent advances in 3D data acquisition and processing by time-of-flight camera. IEEE Access. 7:12495–12510. doi:10.1109/ACCESS.2019.2891693.
  • Hou X, Bai Y, Li Y, Shang C, Shen Q. 2021. High-resolution triplet network with dynamic multiscale feature for change detection on satellite images. ISPRS J Photogramm Remote Sens. 177:103–115. doi:10.1016/j.isprsjprs.2021.05.001.
  • Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Jabari S, Rezaee M, Fathollahi F, Zhang Y. 2019. Multispectral change detection using multivariate Kullback-Leibler distance. ISPRS J Photogramm Remote Sens. 147:163–177. doi:10.1016/j.isprsjprs.2018.11.014.
  • Jung F. 2004. Detecting building changes from multitemporal aerial stereopairs. ISPRS J Photogramm Remote Sens. 58(3–4):187–201. doi:10.1016/j.isprsjprs.2003.09.005.
  • Lak AM, Zoej MJV, Mokhtarzade M. 2016. A new method for road detection in urban areas using high-resolution satellite images and Lidar data based on fuzzy nearest-neighbor classification and optimal features. Arab J Geosci. 9(5):358. doi:10.1007/s12517-016-2374-1.
  • Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. 2017. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Long J, Shelhamer, E, Darrell, T. 2015. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Lu D, Mausel P, Brondízio E, Moran E. 2004. Change detection techniques. Int J Remote Sens. 25(12):2365–2401. doi:10.1080/0143116031000139863.
  • Malpica JA, Alonso MC, Papí F, Arozarena A, Martínez De Agirre A. 2013. Change detection of buildings from satellite imagery and lidar data. Int J Remote Sens. 34(5):1652–1675. doi:10.1080/01431161.2012.725483.
  • Marsocci V, Coletta V, Ravanelli R, Scardapane S, Crespi M. 2023. Inferring 3D change detection from bitemporal optical images. ISPRS J Photogramm Remote Sens. 196:325–339. doi:10.1016/j.isprsjprs.2022.12.009.
  • Nebiker S, Lack N, Deuber M. 2014. Building change detection from historical aerial photographs using dense image matching and object-based image analysis. Remote Sens. 6(9):8310–8336. doi:10.3390/rs6098310.
  • Pan J, Cui W, An X, Huang X, Zhang H, Zhang S, Zhang R, Li X, Cheng W, Hu Y. 2022. MapsNet: multi-level feature constraint and fusion network for change detection. Int J Appl Earth Obs Geoinf. 108:102676. doi:10.1016/j.jag.2022.102676.
  • Pan J, Li X, Cai Z, Sun B, Cui W. 2022. A self-attentive hybrid coding network for 3D change detection in high-resolution optical stereo images. Remote Sens. 14(9):2046. doi:10.3390/rs14092046.
  • Pang S, Hu X, Cai Z, Gong J, Zhang M. 2018. Building change detection from bi-temporal dense-matching point clouds and aerial images. Sensors. 18(4):966. doi:10.3390/s18040966.
  • Pang S, Hu X, Zhang M, Cai Z, Liu F. 2019. Co-segmentation and superpixel-based graph cuts for building change detection from bi-temporal digital surface models and aerial images. Remote Sens. 11(6):729. doi:10.3390/rs11060729.
  • Peng D, Zhang Y, Guan H. 2019. End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sens. 11(11):1382. doi:10.3390/rs11111382.
  • Qin R. 2014. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery. ISPRS J Photogramm Remote Sens. 96:179–192. doi:10.1016/j.isprsjprs.2014.07.007.
  • Qin R, Tian J, Reinartz P. 2016. 3D change detection–approaches and applications. ISPRS J Photogramm Remote Sens. 122:41–56. doi:10.1016/j.isprsjprs.2016.09.013.
  • Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Proceedings, Part III 18, Oct 5–9; Munich, Germany: Springer.
  • Sasagawa A, Baltsavias E, Kocaman-Aksakal S, Wegner JD. 2013. Investigation on automatic change detection using pixel-changes and DSM-changes with ALOS-PRISM triplet images. Int Arch Photogramm Remote Sens Spatial Inf Sci. XL-7/W2(7/W2):213–217. doi:10.5194/isprsarchives-XL-7-W2-213-2013.
  • Shafique A, Cao G, Khan Z, Asad M, Aslam M. 2022. Deep learning-based change detection in remote sensing images: a review. Remote Sens. 14(4):871. doi:10.3390/rs14040871.
  • Shi W, Caballero J, Husz’ar F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556.
  • Singh A. 1989. Review article digital change detection techniques using remotely-sensed data. Int J Remote Sens. 10(6):989–1003. doi:10.1080/01431168908903939.
  • Tian J, Chaabouni-Chouayakh H, Reinartz P, Krauss T, d‘Angelo P. 2010. Automatic 3D change detection based on optical satellite stereo imagery. Int Arch Photogramm Remote Sens Spatial Information Sci. 38(7B):586–591.
  • Tian J, Cui S, Reinartz P. 2014. Building change detection based on satellite stereo imagery and digital surface models. IEEE Trans Geosci Remote Sens. 52(1):406–417. doi:10.1109/TGRS.2013.2240692.
  • Tian J, Chaabouni-Chouayakh H, Reinartz P. 2011. 3D building change detection from high resolution spaceborne stereo imagery. 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping; IEEE.
  • Tian J, Nielsen AA, Reinartz P. 2015. Building damage assessment after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs. Int J Image Data Fusion. 6(2):155–169. doi:10.1080/19479832.2014.1001879.
  • Tian J, Reinartz P, d’Angelo P, Ehlers M. 2013. Region-based automatic building and forest change detection on Cartosat-1 stereo imagery. ISPRS J Photogramm Remote Sens. 79:226–239. doi:10.1016/j.isprsjprs.2013.02.017.
  • Tu J, Li D, Feng W, Han Q, Sui H. 2017. Detecting damaged building regions based on semantic scene change from multi-temporal high-resolution remote sensing images. IJGI. 6(5):131. doi:10.3390/ijgi6050131.
  • Turker M, Cetinkaya B. 2005. Automatic detection of earthquake‐damaged buildings using DEMs created from pre‐and post‐earthquake stereo aerial photographs. Int J Remote Sens. 26(4):823–832. doi:10.1080/01431160512331316810.
  • Waser L, Baltsavias E, Ecker K, Eisenbeiss H, Feldmeyer-Christe E, Ginzler C, Küchler M, Zhang L. 2008. Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images. Remote Sens Environ. 112(5):1956–1968. doi:10.1016/j.rse.2007.09.015.
  • Wei L, Lu M, Chen X. 2015. Automatic change detection of urban land-cover based on SVM classification. 2015 IEEE international geoscience and remote sensing symposium (IGARSS); IEEE.
  • Woo S, Park J, Lee J-Y,SoKweon I. 2018. CBAM: convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV).
  • Xie Z, Wang M, Han Y, Yang D. 2019. Hierarchical decision tree for change detection using high resolution remote sensing images. Geo-informatics in Sustainable Ecosystem and Society: 6th International Conference, GSES 2018, Sept. 25–26, Handan, China: Springer.
  • Yang X, Li S, Chen Z, Chanussot J, Jia X, Zhang B, Li B, Chen P. 2021. An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery. ISPRS J Photogramm Remote Sens. 177:238–262. doi:10.1016/j.isprsjprs.2021.05.004.
  • Yang Y, Chen C, Yang B, Hu P, Cui Y. 2021. 3D change detection of buildings based on multi-level segmentation of dense matching point clouds from UAV images. Geomat Inf Sci Wuhan Univ. 46(4):489–496.
  • Ye S, Liu D, Yao X, Tang H, Xiong Q, Zhuo W, Du Z, Huang J, Su W, Shen S, et al. 2018. RDCRMG: a raster dataset clean & reconstitution multi-grid architecture for remote sensing monitoring of vegetation dryness. Remote Sens. 10(9):1376. doi:10.3390/rs10091376.
  • Zhang C, Yue P, Tapete D, Jiang L, Shangguan B, Huang L, Liu G. 2020. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J Photogramm Remote Sens. 166:183–200. doi:10.1016/j.isprsjprs.2020.06.003.
  • Zhang H, Wang M, Wang F, Yang G, Zhang Y, Jia J, Wang S. 2021. A novel squeeze-and-excitation W-Net for 2D and 3D building change detection with multi-source and multi-feature remote sensing data. Remote Sens. 13(3):440. doi:10.3390/rs13030440.
  • Zhang R, Zhang H, Ning X, Huang X, Wang J, Cui W. 2023. Global-aware siamese network for change detection on remote sensing images. ISPRS J Photogramm Remote Sens. 199:61–72. doi:10.1016/j.isprsjprs.2023.04.001.
  • Zhigao Y, Qianqing Q, Qifeng Z. 2006. Change detection in high spatial resolution images based on support vector machine. 2006 IEEE International Symposium on Geoscience and Remote Sensing; IEEE.
  • Zhu Q, Guo X, Deng W, Shi S, Guan Q, Zhong Y, Zhang L, Li D. 2022. Land-use/land-cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS J Photogramm Remote Sens. 184:63–78. doi:10.1016/j.isprsjprs.2021.12.005.
  • Zuxun Z, Huiwei J, Shiyan P, Xiangyun H. 2022. Review and prospect in change detection of multi-temporal remote sensing images. Acta Geod Cartogr Sin. 51(7):1091.