379
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling of landslides susceptibility prediction using deep belief networks with optimized learning rate control

&
Article: 2322060 | Received 04 Dec 2023, Accepted 16 Feb 2024, Published online: 29 Feb 2024

References

  • Azarafza M, Azarafza M, Akgün H, Atkinson PM, Derakhshani R. 2021. Deep learning-based landslide susceptibility mapping. Sci Rep. 11(1):24112. doi: 10.1038/s41598-021-03585-1.
  • Balogun A-L, Rezaie F, Pham QB, Gigović L, Drobnjak S, Aina YA, Panahi M, Yekeen ST, Lee S. 2021. Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with with GWO, BAT and COA algorithms. Geosci Front. 12(3):101104. doi: 10.1016/j.gsf.2020.10.009.
  • Bien TX, Iqbal M, Jamal A, Nguyen DD, Van Phong T, Costache R, Ho LS, Van Le H, Nguyen HBT, Prakash I, et al. 2023. Integration of rotation forest and multiboost ensemble methods with forest by penalizing attributes for spatial prediction of landslide susceptible areas. Stoch Environ Res Risk Assess. 37(12):4641–4660. doi: 10.1007/s00477-023-02521-1.
  • Bui DT, Tsangaratos P, Nguyen VT, Liem NV, Trinh PT. 2020. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. Catena. 188(2020):104426. doi: 10.1016/j.catena.2019.104426.
  • Chiang J-L, Kuo C-M, Fazeldehkordi L. 2022. Using deep learning to formulate the landslide rainfall threshold of the potential large-scale landslide. Water. 14(20):3320–3341. doi: 10.3390/w14203320.
  • Dahal A, Lombardo L. 2023. Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling. Comput Geosci. 176:105364. doi: 10.1016/j.cageo.2023.105364.
  • Devara M, Maurya V, Tiwari A, Dwivedi R. 2021. A multi-criteria landslide susceptibility mapping using deep multi-layer perceptron network: a case study of Srinagar-Rudraprayag region (India). Adv Space Res. 69(4):1883–1893. doi: 10.1016/j.asr.2021.10.021.
  • Dimililer K, Dindar H, Al-Turjman F. 2021. Deep learning, machine learning and internet of things in geophysical engineering applications: an overview. Microprocess Microsyst. 80(15):103613. doi: 10.1016/j.micpro.2020.103613.
  • Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Avtar R, Chen Y, Pham BT, Yamagishi H. 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci Total Environ. 720:137320. doi: 10.1016/j.scitotenv.2020.137320.
  • Ge Y, Liu G, Tang H, Zhao B, Xiong C. 2023. Comparative analysis of five convolutional neural networks for landslide susceptibility assessment. Bull Eng Geol Environ. 82(10):377–396. doi: 10.1007/s10064-023-03408-9.
  • Gorsevski PV. 2023. A free web-based approach for rainfall-induced landslide susceptibility modeling: case study of clearwater national forest, Idaho, USA. Environ Model Softw. 161:105632. doi: 10.1016/j.envsoft.2023.105632.
  • Government ZCPS. 2023. The basic information of Zhidan County [online]. https://zhidan.gov.cn.
  • Grabowski D, Laskowicz I, Małka A, Rubinkiewicz J. 2022. Geoenvironmental conditioning of landsliding in river valleys of lowland regions and its significance in landslide susceptibility assessment: a case study in the Lower Vistula Valley, Northern Poland. Geomorphology. 419:108490. doi: 10.1016/j.geomorph.2022.108490.
  • Gu T, Li J, Wang M, Duan P. 2022. Landslide susceptibility assessment in Zhenxiong county of China based on geographically weighted logistic regression model. Geocarto Int. 37(17):4952–4973. doi: 10.1080/10106049.2021.1903571.
  • Hong H, Tsangaratos P, Ilia I, Loupasakis C, Wang Y. 2020. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta heuristic algorithm for landslide susceptibility mapping. Sci Total Environ. 2020(742):140549. doi: 10.1016/j.scitotenv.2020.140549.
  • Li J, Wang W, Chen G, Han Z. 2022. Spatiotemporal assessment of landslide susceptibility in Southern Sichuan, China using SA-DBN, PSO-DBN and SSA-DBN models compared with DBN model. Adv Space Res. 69(8):3071–3087. doi: 10.1016/j.asr.2022.01.043.
  • Li J, Zhang Y. 2017. GIS-supported certainty factor (CF) models for assessment of geothermal potential: a case study of Tengchong County, southwest China. Energy. 140(1):552–565. doi: 10.1016/j.energy.2017.09.012.
  • Lima P, Steger S, Glade T, Mergili M. 2023. Conventional data-driven landslide susceptibility models may only tell us half of the story: potential underestimation of landslide impact areas depending on the modeling design. Geomorphology. 430:108638. doi: 10.1016/j.geomorph.2023.108638.
  • Moragues S, Lenzano MG, Lanfri M, Moreiras SM, Lannutti E, Lenzano LE. 2021. Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina. Nat Hazards. 105(1):915–941. doi: 10.1007/s11069-020-04343-8.
  • Nikoobakht S, Azarafza M, Akgün H, Derakhshani R. 2022. Landslide susceptibility assessment by using convolutional neural network. Appl Sci. 12(12):5992. doi: 10.3390/app12125992.
  • Norsakinah S, Majid NA, Taha MR, Osman AS. 2022. Landslide susceptibility model using artificial neural network (ANN) approach in Langat River Basin, Selangor, Malaysia. Land. 11(6):833–850. doi: 10.3390/land11060833.
  • Okalp K, Akgün H. 2022. Landslide susceptibility assessment in medium-scale: case studies from the major drainage basins of Turkey. Environ Earth Sci. 81(8):81–88. (doi: 10.1007/s12665-022-10355-3.
  • Park S, Hamm S-Y, Kim J. 2019. Performance evaluation of the GIS-based data-mining techniques decision tree, random forest, and rotation forest for landslide susceptibility modeling. Sustainability. 11(20):5659–5702. doi: 10.3390/su11205659.
  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu AL, Costache R, Khedher KM, et al. 2021. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomatics Nat Hazards Risk. 12(1):1741–1777. doi: 10.1080/19475705.2021.1944330.
  • Som SK, Saibal G, Soumitra D, Thrideep KN, Hindayar JN, Murali M, Dasarwar P, Snehasis B. 2023. Utility of common variance of equally-weighted variables for GIS-based landslide susceptibility mapping at the Eastern Himalaya. J Earth Syst Sci. 132(1):1–17. doi: 10.1007/s12040-022-02017-6.
  • Sun H, Li W, Scaioni M, Fu J, Guo X, Gao J. 2023. Influence of spatial heterogeneity on landslide susceptibility in the transboundary area of the Himalayas. Geomorphology. 433:108723. doi: 10.1016/j.geomorph.2023.108723.
  • Tingyu Z, Ling H, Heng Z, Yong-Hua Z, Xi-An LI, Lei Z. 2019. GIS-based landslide susceptibility mapping using hybrid integration approaches of fractal dimension with index of entropy and support vector machine. J Mt Sci.
  • Xiao L, Zhang Y, Peng G. 2018. Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway. Sensors. 18(12):4436. doi: 10.3390/s18124436.
  • Youssef AM, Pradhan B, Dikshit A, Al-Katheri MM, Matar SS, Mahdi AM. 2022. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bull Eng Geol Environ. 81(4):110–135. doi: 10.1007/s10064-022-02657-4.
  • Zhang T, Fu Q, Li C, Liu F, Wang H, Han L, Quevedo RP, Chen T, Lei N. 2023. Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest. Nat Hazards. 115(2):1873–1873. doi: 10.1007/s11069-022-05756-3.
  • Zhang T, Li Y, Wang T, Wang H, Chen T, Sun Z, Luo D, Li C, Han L. 2022. Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping. Geosci Lett. 9(1):107–133. doi: 10.1186/s40562-022-00236-9.
  • Zhao S, Zhao Z. 2021. A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on grid and slope units. Math Prob Eng. 2021(3):1–15. doi: 10.1155/2021/8854606.