141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A dual-difference change detection network for detecting building changes on high-resolution remote sensing images

, , , , &
Article: 2322080 | Received 11 Dec 2023, Accepted 16 Feb 2024, Published online: 13 Mar 2024

References

  • Bandara WG, Patel VM. 2022. A transformer-based siamese network for change detection. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium . p. 207 – 210. doi:10.1109/IGARSS46834.2022.9883686.
  • Barkur R, Suresh D, Lal S, Reddy, CS, Diwakar, PG. 2023. RSCDNet: a robust deep learning architecture for change detection from bi-temporal high resolution remote sensing images. IEEE Trans Emerg Top Comput Intell. 7(2), 537–551. doi:10.1109/TETCI.2022.3230941.
  • Basavaraju KS, Hiren NS, Sravya N, Lal S, Nalini J, Sudhakar Reddy C. 2023. BCDetNet: a deep learning architecture for building change detection from bi-temporal high resolution satellite images. Int J Mach Learn Cyber. 14(12):4047–4062. doi:10.1007/s13042-023-01880-z.
  • Basavaraju KS, Sravya N, Lal S, Nalini J, Reddy CS, Dell’Acqua F. 2022. UCDNet: a deep learning model for urban change detection from bi-temporal multispectral Sentinel-2 satellite images. IEEE Trans Geosci Remote Sens. 60:1–10. doi:10.1109/TGRS.2022.3161337.
  • Chen J, Fan J, Zhang M, Zhou Y, Shen C. 2022. MSF-Net: a multiscale supervised fusion network for building change detection in high-resolution remote sensing images. IEEE Access. 10:30925–30938. doi:10.1109/ACCESS.2022.3160163.
  • Chen H, Qi Z, Shi Z. 2022. Remote sensing image change detection with transformers. IEEE Trans Geosci Remote Sens. 60:1–14. doi:10.1109/TGRS.2021.3095166.
  • Chen H, Shi Z. 2020. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote. Sens. 12(10):1662. doi:10.3390/rs12101662.
  • Chen D, Wang Y, Shen Z, Liao J, Chen J, Sun S. 2021. Long time-series mapping and change detection of coastal zone land use based on google earth engine and multi-source data fusion. Remote Sens. 14(1):1. doi:10.3390/rs14010001.
  • Chen Z, Zhou Y, Wang B, Xu X, He N, Jin S, Jin S. 2022. EGDE-Net: a building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement. ISPRS J Photogramm Remote Sens. 191:203–222. doi:10.1016/j.isprsjprs.2022.07.016.
  • Chen L, Zhu Y, Papandreou G, Schroff F, Adam H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. European Conference on Computer Vision (ECCV). p. 801–818. doi:10.1007/978-3-030-01234-2_49.
  • Cho K, Merrienboer BV, Gülçehre Ç, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation. Conference on empirical methods in natural language processing. doi:10.3115/v1/D14-1179.
  • Daudt RC, Le Saux B, Boulch A. 2018 . Fully convolutional siamese networks for change detection. In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE. p. 4063–4067. doi:10.1109/ICIP.2018.8451652.
  • Du ZH, Li X, Miao J, Huang Y, Shen H, Zhang L. 2024. Concatenated deep-learning framework for multitask change detection of optical and sar images. IEEE J Sel Top Appl Earth Observ Remote Sens. 17:719–731. doi:10.1109/JSTARS.2023.3333959.
  • Eftekhari A, Samadzadegan F, Dadras Javan F. 2023. Building change detection using the parallel spatial-channel attention block and edge-guided deep network. Int J Appl Earth Obs Geoinf. 117:103180. doi:10.1016/j.jag.2023.103180.
  • Fang S, Li K, Li Z. 2023. Changer: feature interaction is what you need for change detection. IEEE Trans Geosci Remote Sens. 61:1–11. doi:10.1109/TGRS.2023.3277496.
  • Fang S, Li K, Shao J, Li Z. 2022. SNUNet-CD: a densely connected siamese network for change detection of VHR images. IEEE Geosci Remote Sens Lett. 19(1):1–5. doi:10.1109/LGRS.2021.3056416.
  • Feizizadeh B, Blaschke T, Tiede D, Moghaddam MH. 2017. Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes. Geomorphology. 293:240–254. doi:10.1016/j.geomorph.2017.06.002.
  • Guo E, Fu X, Zhu J, Deng M, Liu Y, Zhu Q, Li H. 2018. Learning to measure change: fully convolutional siamese metric networks for scene change detection. IEEE Trans Multimedia. 18:1–10. ArXiv, abs/1810.09111.
  • Hölbling D, Friedl B, Eisank C. 2015. An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Sci Inform. 8(2):327–335. doi:10.1007/s12145-015-0217-3.
  • Huang G, Liu Z, Weinberger KQ. 2016. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . p. 2261 – 2269. doi:10.1109/CVPR.2017.243.
  • Kattenborn T, Leitloff J, Schiefer F, Hinz S. 2021. Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens. 173:24–49. doi:10.1016/j.isprsjprs.2020.12.010.
  • Khotimah WN, Boussaid F, Sohel F, Xu L, Edwards D, Jin X, Bennamoun M. 2022. SC-CAN: spectral convolution and channel attention network for wheat stress classification. Remote. Sens. 14(17):4288. doi:10.3390/rs14174288.
  • Li Z, Shen H, Cheng Q, Liu Y, You S, He Z. 2019. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J Photogramm Remote Sens. 150:197–212. doi:10.1016/j.isprsjprs.2019.02.017.
  • Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. 2021. Swin transformer: hierarchical vision transformer using shifted windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . p. 9992 – 10002. doi:10.1109/ICCV48922.2021.00986.
  • Li Y, Wang C. 2022. Image splicing tamper detection based on two-channel dilated convolution. 2022 3rd Asia Service Sciences and Software Engineering Conference. Association for Computing Machinery, New York, NY, USA . p. 37–43. doi:10.1145/3523181.3523187.
  • Morgan GR, Wang C, Li Z, Schill SR, Morgan DR. 2022. Deep learning of high-resolution aerial imagery for coastal marsh change detection: a comparative study. IJGI. 11(2):100. doi:10.3390/ijgi11020100.
  • Peng X, Zhong R, Li Z, Li Q. 2021. Optical remote sensing image change detection based on attention mechanism and image difference. IEEE Trans Geosci Remote Sens. 59(9):7296–7307. doi:10.1109/TGRS.2020.3033009.
  • Shi W, Zhang M, Zhang R, Chen S, Zhan Z. 2020. Change detection based on artificial intelligence: state-of-the-art and challenges. Remote Sens. 12(10):1688. doi:10.3390/rs12101688.
  • Song C, Huang B, Ke L, Richards KS. 2014. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: a review. ISPRS J Photogramm Remote Sens. 92:26–37. doi:10.1016/j.isprsjprs.2014.03.001.
  • Strudel R, Garcia R, Laptev I, Schmid C. 2021. Segmenter: transformer for Semantic Segmentation. arXiv preprint arXiv:2105.05633
  • Wen D, Huang X, Bovolo F, Li J, Ke X, Zhang A, Benediktsson JA. 2021. Change detection from very-high-spatial-resolution optical remote sensing images: methods, applications, and future directions. IEEE Geosci Remote Sens Mag. 9(4):68–101. doi:10.1109/MGRS.2021.3063465.
  • Woo S, Park J, Lee JY, Kweon IS. 2018. CBAM: convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV). doi:10.1007/978-3-030-01234-2_1.
  • Wu X, Hong D, Chanussot J. 2022. Convolutional neural networks for multimodal remote sensing data classification. IEEE Trans Geosci Remote Sens. 60:1–10. doi:10.1109/TGRS.2021.3124913.
  • Xu X, Zhou Y, Lu X, Chen Z. 2023. FERA-net: a building change detection method for high-resolution remote sensing imagery based on residual attention and high-frequency features. Remote Sens. 15(2):395. doi:10.3390/rs15020395.
  • Yang Q, Lu T, Zhou H. 2022. A spatio-temporal motion network for action recognition based on spatial attention. Entropy. 24(3):368. doi:10.3390/e24030368.
  • Yang X, Qu D, Si N, Xin S. 2023. Remote sensing image object detection algorithm combining attention. Proceedings of the 2023 9th International Conference on Computing and Artificial Intelligence. Association for Computing Machinery, New York, NY, USA . p. 1–7. doi:10.1145/3594315.3594316.
  • Zhang C, Yue P, Tapete D, Jiang L, Shangguan B, Huang L, Liu G. 2020. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J Photogramm Remote Sens. 166:183–200. doi:10.1016/j.isprsjprs.2020.06.003.
  • Zheng H, Gong M, Liu T, Jiang F, Zhan T, Lu D, Zhang M. 2022. HFA-Net: high frequency attention siamese network for building change detection in VHR remote sensing images. Pattern Recognit. 129:108717. doi:10.1016/j.patcog.2022.108717.
  • Zhou Y, Feng Y, Huo S, Li X. 2022. Joint frequency-spatial domain network for remote sensing optical image change detection. IEEE Trans Geosci Remote Sens. 60:1–14. doi:10.1109/TGRS.2022.3196040.
  • Zhou Z, Siddiquee MM, Tajbakhsh N, Liang J. 2019. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging. 39(6):1856–1867. doi:10.1109/TMI.2019.2959609.