207
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing landslide susceptibility modelling through a novel non-landslide sampling method and ensemble learning technique

, , , , , , , , & show all
Article: 2327463 | Received 28 Nov 2023, Accepted 01 Mar 2024, Published online: 27 Mar 2024

References

  • Akinci H, Zeybek M. 2021. Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Nat Hazards. 108(2):1515–1543. doi:10.1007/s11069-021-04743-4.
  • Cao Y, Yin K, Alexande DE, et al. 2016. Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides. 13:725–736.
  • Dou H, He J, Huang S, Jian W, Guo C. 2023. Influences of non-landslide sample selection strategies on landslide susceptibility mapping by machine learning. Geomat Nat Hazard Risk. 14(1):2285719. doi:10.1080/19475705.2023.2285719.
  • Fu Z, Wang F, Dou J, Nam K, Ma H. 2023. Enhanced absence sampling technique for data-driven landslide susceptibility mapping: a case study in Songyang County, China. Remote Sens. 15(13):3345. doi:10.3390/rs15133345.
  • Gameiro S, Riffel ES, de Oliveira GG, Guasselli LA. 2021. Artificial neural networks applied to landslide susceptibility: the effect of sampling areas on model capacity for generalization and extrapolation. Appl Geogr. 137:102598. doi:10.1016/j.apgeog.2021.102598.
  • Gardner MW, Dorling SR. 1998. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ. 32(14-15):2627–2636. doi:10.1016/S1352-2310(97)00447-0.
  • Gentilucci M, Pelagagge N, Rossi A, Domenico A, Pambianchi G. 2023. Landslide susceptibility using climatic–environmental factors using the weight-of-evidence method—a study area in Central Italy. Appl Sci. 13(15):8617. doi:10.3390/app13158617.
  • Hong H. 2023. Assessing landslide susceptibility based on hybrid Best-first decision tree with ensemble learning model. Ecol Indic. 147:109968. doi:10.1016/j.ecolind.2023.109968.
  • Hong H. 2023. Assessing landslide susceptibility based on hybrid multilayer perceptron with ensemble learning. Bull Eng Geol Environ. 82(10):382. doi:10.1007/s10064-023-03409-8.
  • Hong H, Wang D, Zhu AX, Wang Y. 2024. Landslide susceptibility mapping based on the reliability of landslide and non-landslide sample. Expert Syst Appl. 243:122933. doi:10.1016/j.eswa.2023.122933.
  • Hu X, Mei H, Zhang H, Li Y, Li M. 2021. Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping County, Southwest China. Nat Hazards. 105(2):1663–1689. doi:10.1007/s11069-020-04371-4.
  • Hu J, Motagh M, Wang J, Qin F, Zhang J, Wu W, Han Y. 2021. Karst collapse risk zonation and evaluation in Wuhan, China based on analytic hierarchy process, logistic regression, and InSAR angular distortion approaches. Remote Sensing. 13(24):5063. doi:10.3390/rs13245063.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439. doi:10.1007/s10346-013-0391-7.
  • Liu B, Guo H, Li J, Ke X, He X. 2024. Application and interpretability of ensemble learning for landslide susceptibility mapping along the Three Gorges Reservoir area, China. Nat Hazards. 1–32. doi:10.1007/s11069-023-06374-3.
  • Long J, Liu Y, Li C, Fu Z, Zhang H.,. 2021. A novel model for regional susceptibility mapping of rainfall-reservoir induced landslides in Jurassic slide-prone strata of western Hubei Province, Three Gorges Reservoir area. Stoch Environ Res Risk Assess. 35(7):1403–1426. doi:10.1007/s00477-020-01892-z.
  • Lucchese LV, de Oliveira GG, Pedrollo OC. 2021. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks. Catena. 198:105067. doi:10.1016/j.catena.2020.105067.
  • Meena SR, Puliero S, Bhuyan K, Floris M, Catani F. 2022. Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy). Nat Hazards Earth Syst Sci. 22(4):1395–1417. doi:10.5194/nhess-22-1395-2022.
  • Mohammed A, Kora R. 2023. A comprehensive review on ensemble deep learning: opportunities and challenges. J King Saud Univ Comput Inform Sci. 35(2):757–774.
  • Pham BT, Jaafari A, Nguyen-Thoi T, Van Phong T, Nguyen HD, Satyam N, Masroor M, Rehman S, Sajjad H, Sahana M, et al. 2021. Ensemble machine learning models based on reduced error pruning tree for prediction of rainfall-induced landslides. Int J Digital Earth. 14(5):575–596. doi:10.1080/17538947.2020.1860145.
  • Qazi A, Singh K, Vishwakarma DK, Abdo HG. 2023. GIS based landslide susceptibility zonation mapping using frequency ratio, information value and weight of evidence: a case study in Kinnaur District HP India. Bull Eng Geol Environ. 82(8):332. doi:10.1007/s10064-023-03344-8.
  • Roy P, Martha TR, Vinod Kumar K, Chauhan P, Rao VV. 2023. Cluster landslides and associated damage in the Dima Hasao district of Assam, India due to heavy rainfall in May 2022. Landslides. 20(1):97–109. doi:10.1007/s10346-022-01977-6.
  • Sabokbar HF, Roodposhti MS, Tazik E. 2014. Landslide susceptibility mapping using geographically-weighted principal component analysis. Geomorphology. 226:15–24. doi:10.1016/j.geomorph.2014.07.026.
  • Sharma N, Saharia M, Ramana GV. 2024. High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data. Catena. 235:107653. doi:10.1016/j.catena.2023.107653.
  • Song J, Wang Y, Fang Z, Peng L, Hong H. 2020. Potential of ensemble learning to improve tree-based classifiers for landslide susceptibility mapping. IEEE J Sel Top Appl Earth Observations Remote Sensing. 13:4642–4662. doi:10.1109/JSTARS.2020.3014143.
  • Sun D, Gu Q, Wen H, Xu J, Zhang Y, Shi S, Xue M, Zhou X. 2022. Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Res. 123:89–106. doi:10.1016/j.gr.2022.07.013.
  • Tang M, Xu Q, Yang H, Li S, Iqbal J, Fu X, Huang X, Cheng W. 2019. Activity law and hydraulics mechanism of landslides with different sliding surface and permeability in the Three Gorges Reservoir Area, China. Eng Geol. 260:105212. doi:10.1016/j.enggeo.2019.105212.
  • Tanyu BF, Abbaspour A, Alimohammadlou Y, Tecuci G. 2021. Landslide susceptibility analyses using Random Forest, C4. 5, and C5. 0 with balanced and unbalanced datasets. Catena. 203:105355. doi:10.1016/j.catena.2021.105355.
  • Wang C, Lin Q, Wang L, Jiang T, Su B, Wang Y, Mondal SK, Huang J, Wang Y. 2022. The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China. Nat Hazards. 112(3):1967–1988. doi:10.1007/s11069-022-05252-8.
  • Yavuz Ozalp A, Akinci H, Zeybek M. 2023. Comparative analysis of tree-based ensemble learning algorithms for landslide susceptibility mapping: a case study in Rize, Turkey. Water. 15(14):2661. doi:10.3390/w15142661.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5):839–856. doi:10.1007/s10346-015-0614-1.
  • Yu L, Cao Y, Zhou C, Wang Y, Huo Z. 2019. Landslide susceptibility mapping combining information gain ratio and support vector machines: a case study from Wushan Segment in the Three Gorges Reservoir Area, China. Appl Sci. 9(22):4756. doi:10.3390/app9224756.
  • Yu L, Zhou C, Wang Y, Cao Y, Peres DJ. 2022. Coupling data-and knowledge-driven methods for landslide susceptibility mapping in human-modified environments: a case study from Wanzhou County, Three Gorges Reservoir Area, China. Remote Sensing. 14(3):774. doi:10.3390/rs14030774.
  • Zhou C, Cao Y, Hu X, Yin K, Wang Y, Catani F. 2022. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area. Landslides. 19(7):1585–1597. doi:10.1007/s10346-021-01796-1.
  • Zhou C, Cao Y, Yin K, Intrieri E, Catani F, Wu L. 2022. Characteristic comparison of seepage-driven and buoyancy-driven landslides in Three Gorges Reservoir area, China. Eng Geol. 301:106590. doi:10.1016/j.enggeo.2022.106590.
  • Zhou C, Yin KL, Cao Y, Li Y. 2020a. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: A case study from the Three Gorges Reservoir area. Earth Sci. 45(6):1865–1876. doi:10.3390/rs14030774
  • Zhou C, Cao Y, Yin K, Wang Y, Shi X, Catani F, Ahmed B. 2020b. Landslide characterization applying sentinel-1 images and InSAR technique: the Muyubao landslide in the three Gorges Reservoir Area, China. Remote Sensing. 12(20):3385. doi:10.3390/rs12203385.
  • Zhou C, Yin K, Cao Y, Ahmed B. 2016. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng Geol. 204:108–120. doi:10.1016/j.enggeo.2016.02.009.
  • Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR.,. 2018. Landslide susceptibility modelling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China. Comput Geosci. 112:23–37. doi:10.1016/j.cageo.2017.11.019.
  • Zhu AX, Miao Y, Liu J, Bai S, Zeng C, Ma T, Hong H. 2019. A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods. Catena. 183:104188. doi:10.1016/j.catena.2019.104188.