169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

TDSCCNet: twin-depthwise separable convolution connect network for change detection with heterogeneous images

, , , &
Article: 2329673 | Received 18 Aug 2023, Accepted 07 Mar 2024, Published online: 18 Mar 2024

References

  • Alberga V. 2009. Similarity measures of remotely sensed multi-sensor images for change detection applications. Remote Sens. 1(3):122–143. doi: 10.3390/rs1030122.
  • Bandara WGC, Patel VM. 2022. A transformer-based siamese network for change detection. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium; p. 207–210. doi: 10.1109/IGARSS46834.2022.9883686.
  • Chen H, Shi Z. 2020. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 12(10):1662. doi: 10.3390/rsxx010005.
  • Chollet F. 2016. Xception: deep learning with depthwise separable convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); p. 1800–1807. doi: 10.1109/CVPR.2017.195.
  • De A, Connette GM, Oswald P, Webb EL. 2018. Combined landsat and L-Band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sens. 10(2):306. doi: 10.3390/rs10020306.
  • Fekete A. 2020. CORONA high-resolution satellite and aerial imagery for change detection assessment of natural hazard risk and urban growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA. Remote Sens. 12(19):3246. doi: 10.3390/rs12193246.
  • Fyleris T, Kriščiūnas A, Gružauskas V, Čalnerytė D, Barauskas R. 2022. Urban change detection from aerial images using convolutional neural networks and transfer learning. IJGI. 11(4):246. doi: 10.3390/ijgi11040246.
  • Gong MG, Zhao J, Liu J, Miao Q, Jiao L. 2016. Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans Neural Netw Learn Syst. 27(1):125–138. doi: 10.1109/TNNLS.2015.2435783.
  • Gong MG, Zhang P, Su L, Liu J. 2016. Coupled dictionary learning for change detection from multisource data. IEEE Trans Geosci Remote Sens. 54(12):7077–7091. doi: 10.1109/TGRS.2016.2594952.
  • Gong MG, Yang H, Zhang P. 2017. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS J Photogramm Remote Sens. 129:212–225. doi: 10.1016/j.isprsjprs.2017.05.001.
  • Goodfellow I, J, Pouget-Abadie M, Mirza B, Xu D, Warde-Farley S, Ozair Bengio Y. 2014. Generative adversarial nets. Adv Neural Inform Process Syst. 35(1):53–65. doi: 10.1109/MSP.2017.2765202.
  • Guild R, Wang X, Russon AE. 2022. Tracking deforestation, drought, and fire occurrence in Kutai National Park, Indonesia. Remote Sens. 14(22):5630. doi: 10.3390/rs14225630.
  • Lei Z, Chen L, Li Q, Dou H, Chen K. 2022. Adaptive local structure consistency-based heterogeneous remote sensing change detection. IEEE Geosci Remote Sens Lett. 19:8003905. doi: 10.1109/LGRS.2020.3037930.
  • Li X, Du Z, Huang Y, Tan Z. 2021. A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS J Photogramm Remote Sens. 179:14–34. doi: 10.1016/j.isprsjprs.2021.07.007.
  • Li Q, Zhong R, Du X, Du Y. 2022. TransUNetCD: a hybrid transformer network for change detection in optical remote-sensing images. IEEE Trans Geosci Remote Sens. 60:5622519. doi: 10.1109/TGRS.2022.3169479.
  • Lin T, Dollár P, Girshick RB, He K, Hariharan B, Belongie SJ. 2016. Feature pyramid networks for object detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); p. 936–944. doi: 10.1109/CVPR.2017.106.
  • Lin T-Y, Goyal P, Girshick R, He K, Dollar P. 2017. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell. 42(2):318–327. doi: 10.1109/TPAMI.2018.2858826.
  • Liu J, Gong M, Qin K, Zhang P. 2018. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE Trans Neural Netw Learn Syst. 29(3):545–559. doi: 10.1109/TNNLS.2016.2636227.
  • Liu Z, Zhang Z, Pan Q, Ning L. 2022. Unsupervised change detection from heterogeneous data based on image translation. IEEE Trans Geosci Remote Sens. 60:4403413. doi: 10.1109/TGRS.2021.3097717.
  • Liu J, Xuan W, Gan Y, Zhan Y, Liu J, Du B. 2022. An end-to-end supervised domain adaptation framework for cross-domain change detection. Pattern Recognit. 132:108960. doi: 10.1016/j.patcog.2022.108960.
  • Luppino LT, Bianchi FM, Moser G, Anfinsen SN. 2019. Unsupervised image regression for heterogeneous change detection. IEEE Trans Geosci Remote Sens. 57(12):9960–9975. doi: 10.1109/TGRS.2019.2930348.
  • Luppino LT, Hansen MA, Kampffmeyer MC, Bianchi FM, Moser G, Jenssen R, Anfinsen SN. 2020. Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images. IEEE Trans Neural Netw Learn Syst. 35:60–72. doi: 10.1109/TNNLS.2022.3172183.
  • Luppino LT, Kampffmeyer MC, Bianchi FM, Moser G, Serpico SB, Jenssen R, Anfinsen SN. 2020. Deep image translation with an affinity-based change prior for unsupervised multimodal change detection. IEEE Trans Geosci Remote Sens. 60:4700422. doi: 10.1109/TGRS.2021.3056196.
  • Manocha A, Yasir A. 2023. Optical and SAR images-based image translation for change detection using generative adversarial network (GAN). Multimed Tools Appl. 82(17):26289–26315. doi: 10.1007/s11042-023-14331-2.
  • Mercier G, Moser G, Serpico SB. 2008. Conditional copulas for change detection in heterogeneous remote sensing images. IEEE Trans Geosci Remote Sens. 46(5):1428–1441. doi: 10.1109/TGRS.2008.916476.
  • Mignotte M. 2018. An energy-based model encoding nonlocal pairwise pixel interactions for multisensor change detection. IEEE Trans Geosci Remote Sens. 56(2):1046–1058. doi: 10.1109/TGRS.2017.2758359.
  • Mignotte M. 2020. A fractal projection and Markovian segmentation-based approach for multimodal change detection. IEEE Trans Geosci Remote Sens. 58(11):8046–8058. doi: 10.1109/TGRS.2020.2986239.
  • Mou L, Bruzzone L, Zhu X. 2019. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans Geosci Remote Sens. 57(2):924–935. doi: 10.1109/TGRS.2018.2863224.
  • Negassa MD, Mallie DT, Gemeda DO. 2020. Forest cover change detection using geographic information systems and remote sensing techniques: a spatio-temporal study on Komto Protected Forest Priority Area, East Wollega Zone, Ethiopia. Environ Syst Res. 9(1):1–14. doi: 10.1186/s40068-020-0163-z.
  • Niu X, Gong MG, Zhan T, Yang Y. 2019. A conditional adversarial network for change detection in heterogeneous images. IEEE Geosci Remote Sens Lett. 16(1):45–49. doi: 10.1109/LGRS.2018.2868704.
  • Prendes J, Chabert M, Pascal F, Giros A, Tourneret J. 2015. A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors. IEEE Trans Image Process. 24(3):799–812. doi: 10.1109/TIP.2014.2387013.
  • Rai H, Shukla N. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE International Conference on Computer Vision (ICCV), Venice, Italy; pp. 2242–2251. doi: 10.1109/ICCV.2017.244.
  • Shafique A, Cao G, Khan Z, Asad M, Aslam M. 2022. Deep learning-based change detection in remote sensing images: a review. Remote Sens. 14(4):871. doi: 10.3390/rs14040871.
  • Shi W, Zhang M, Zhang R, Chen SX, Zhan Z. 2020. Change detection based on artificial intelligence: state-of-the-art and challenges. Remote Sens. 12(10):1688. doi: 10.3390/rs12101688.
  • Sood V, Gusain HS, Gupta S, Singh S. 2021. Topographically derived subpixel-based change detection for monitoring changes over rugged terrain Himalayas using AWiFS data. J Mt Sci. 18(1):126–140. doi: 10.14358/PERS.69.4.369.
  • Sun Y, Lei L, Li X, Sun H, Kuang G. 2021. Nonlocal patch similarity based heterogeneo-us remote sensing change detection. Pattern Recognit. 109:107598. doi: 10.1016/j.patcog.2020.107598.
  • Sun Y, Lei L, Li X, Tan X, Kuang G. 2021. Patch similarity graph matrix-based unsupervised remote sensing change detection with homogeneous and heterogeneous sensors. IEEE Trans Geosci Remote Sens. 59(6):4841–4861. doi: 10.1109/TGRS.2020.3013673.
  • Touati R, Mignotte M, Dahmane M. 2020. Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model. IEEE Trans Image Process. 29:757–767. doi: 10.1109/TIP.2019.2933747.
  • Tupas ME, Roth F, Bauer-Marschallinger B, Wagner W. 2023. An intercomparison of sentinel-1 based change detection algorithms for flood mapping. Remote Sens. 15(5):1200. doi: 10.3390/rs15051200.
  • Valsesia D, Magli E. 2022. Super-resolved multi-temporal segmentation with deep permutation-invariant networks. IEEE International Geoscience and Remote Sensing Symposium; 995–998. doi: 10.1109/IGARSS46834.2022.9884811.
  • Verma P, Raghubanshi A, Srivastava PK, Raghubanshi AS. 2020. Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Model Earth Syst Environ. 6(2):1045–1059. doi: 10.1007/s40808-020-00740-x.
  • Wang X, Zhang J, Xun L, Wang J, Wu Z, Henchiri M, Zhang S, Zhang S, Bai Y, Yang S, et al. 2022. Evaluating the effectiveness of machine learning and deep learning models combined time-series satellite data for multiple crop types classification over a large-scale region. Remote Sens. 14(10):2341. doi: 10.3390/rs14102341.
  • Wang J, Dobigeon N, Chabert M, Wang D, Huang J, Huang T. 2022. CD-GAN: a robust fusion-based generative adversarial network for unsupervised change detection between heterogeneous images. ArXiv, abs/2203.00948. doi: 10.48550/arXiv.2203.00948.
  • Wang D, Zhao F, Yi H, Li Y, Chen X. 2022. An unsupervised heterogeneous change detection method based on image translation network and post-processing algorithm. Int J Digital Earth. 15(1):1056–1080. doi: 10.1080/17538947.2022.2092658.
  • Xie G, Niculescu S. 2021. Mapping and monitoring of land cover/land use (LCLU) changes in the Crozon Peninsula (Brittany, France) from 2007 to 2018 by machine learning algorithms (support vector machine, random forest, and convolutional neural network) and by post-classification comparison (PCC). Remote Sens. 13(19):3899. doi: 10.3390/rs13193899.
  • Yang X, Liu Y, Zhou S, Liu X, Zhu E. 2022. Mixed graph contrastive network for semi-supervised node classification. ArXiv, abs/2206.02796. doi: 10.48550/arXiv.2206.02796.
  • Zhang C, Yue P, Tapete D, Jiang L, Shangguan B, Huang L, Liu G. 2020. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J Photogramm Remote Sens. 166:183–200. doi: 10.1109/ICIP.2018.8451652.
  • Zhang M, Shi WZ. 2020. A feature difference convolutional neural network-based change detection method. IEEE Trans Geosci Remote Sens. 58(10):7232–7246. doi: 10.1109/TGRS.2020.2981051.
  • Zhao Y, Celik T, Liu N, Li H-C. 2022. A comparative analysis of GAN-based methods for SAR-to-optical image translation. IEEE Geosci Remote Sens Lett. 19:1–5. doi: 10.1109/LGRS.2022.3177001.
  • Zhu Z, Zhang Z, Zuo L, Pan T, Zhao X, Wang X, Sun F, Xu J, Liu Z. 2022. Study on the classification and change detection methods of drylands in arid and semi-arid regions. Remote Sens. 14(5):1256. doi: 10.3390/rs14051256.