171
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Pseudomonas cepacia lipase immobilized on Zn2Al layered double hydroxides: Evaluation of different methods of immobilization for the kinetic resolution of (R,S)-1-phenylethanol

, ORCID Icon, &
Pages 247-261 | Received 16 Oct 2022, Accepted 10 Feb 2023, Published online: 27 Feb 2023

References

  • Abdul Rahman MB, Zaidan UH, Basri M, Hussein MZ, Rahman R, Salleh AB. 2008. Enzymatic synthesis of methyl adipate ester using lipase from Candida rugosa immobilised on Mg, Zn and Ni of layered double hydroxides (LDHs). J Mol Catal B Enzym. 50(1):33–39.
  • Adachi-Pagano M, Forano C, Besse J-P. 2000. Delamination of layered double hydroxides by use of surfactants. Chem Commun. 1(1):91–92.
  • Aghaei H, Ghavi M, Hashemkhani G, Keshavarz M. 2020. Utilization of two modified layered doubled hydroxides as supports for immobilization of Candida rugosa lipase. Int J Biol Macromol. 162:74–83.
  • An Z, Lu S, He J, Wang Y. 2009. Colloidal assembly of proteins with delaminated lamellas of layered metal hydroxide. Langmuir. 25(18):10704–10710.
  • Anderson EM, Larsson KM, Kirk O. 1998. One biocatalyst – many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal Biotransformation. 16(3):181–204.
  • Bandeira PT, Alnoch RC, De Oliveira ARM, De Souza EM, Pedrosa FdO, Krieger N, Piovan L. 2016. Enzymatic kinetic resolution of aliphatic sec-alcohols by LipG9, a metagenomic lipase. J Mol Catal B Enzym. 125:58–63.
  • Barhoumi H, Maaref A, Rammah M, Martelet C, Jaffrezic N, Mousty C, Vial S, Forano C. 2006. Urea biosensor based on Zn3Al–Urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater Sci Eng C. 26(2–3):328–333.
  • Benaissi K, Hélaine V, Prévot V, Forano C, Hecquet L. 2011. Efficient immobilization of yeast transketolase on layered double hydroxides and application for ketose synthesis. Adv Synth Catal. 353(9):1497–1509.
  • Bornscheuer UT, Kazlauskas RJ. 2006. Hydrolases in organic synthesis: regio- and stereoselective biotransformations. 2nd ed. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 72:248–254.
  • Bruna F, Mousty C, Besse-Hoggan P, Batisson I, Prevot V. 2019. Assembly of nitroreductase and layered double hydroxides toward functional biohybrid materials. J Colloid Interface Sci. 533:71–81.
  • Chen CS, Fujimoto Y, Girdaukas G, Sih CJ. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc. 104(25):7294–7299.
  • Dias MRG, De Pauloveloso A, Do Amaral LFM, Betim RT, Nascimento MG, Pilissão C. 2018. Immobilization of Burkholderia cepacia on pristine or functionalized multi-walled carbon nanotubes and application on enzymatic resolution of (R,S)-1-phenylethanol. J Braz Chem Soc. 29:1876–1884.
  • Djebbi MA, Braiek M, Hidouri S, Namour P, Jaffrezic-Renault N, Ben Haj Amara A. 2016. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: synthesis, characterization and catalytic activity studies. J Mol Struct. 1105:381–388.
  • Dong H, Parekh HS, Xu ZP. 2015. Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles. J Colloid Interface Sci. 437:10–16.
  • Dong L, Ge C, Qin P, Chen Y, Xu Q. 2014. Immobilization and catalytic properties of candida lipolytic lipase on surface of organic intercalated and modified MgAl–LDHs. Solid State Sci. 31:8–15.
  • Dulęb J, Michal TS, Marszall P. 2022. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized Amano PS from Burkholderia cepacia lipase (APS-BCL). Process Biochem. 120:126–137.
  • Dwivedee BP, Soni S, Bhimpuria R, Laha JK, Banerjee UC. 2019. Tailoring a robust and recyclable nanobiocatalyst by immobilization of Pseudomonas fluorescens lipase on carbon nanofiber and its application in synthesis of enantiopure carboetomidate analogue. Int J Biol Macromol. 133:1299–1310.
  • Forano C, Vial S, Mousty C. 2006. Nanohybrid enzymes – layered double hydroxides: potential applications. CNANO. 2(3):283–294.
  • Forano C. 2004. Environmental remediation involving layered double hydroxides. Interface Sci Technol. 1:425–458.
  • Fouz MF, Sumanarathne AS, Seneviratne VN, Rajapakse S. 2021. Investigation of enhancement in thermal stability of trypsin in modified Mg/Al layered double hydroxides. Ceylon J Sci. 50(1):29–38.
  • Frykman H, Öhrner N, Norin T, Hult K. 1993. S-ethyl thiooctanoate as acyl donor in lipase catalysed resolution of secondary alcohols. Tetrahedron Lett. 34(8):1367–1370.
  • Ghanem A, Aboul-Enein MN, El-Azzouny A, El-Behairy MF. 2010. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses. J Chromatogr A. 1217(7):1063–1074.
  • Gondim DR, Cecilia JA, Santos SO, Rodrigues TNB, Aguiar JE, Vilarrasa-García E, Rodríguez-Castellón E, Azevedo DCS, Silva IJ. 2018. Influence of buffer solutions in the adsorption of human serum proteins onto layered double hydroxide. Int J Biol Macromol. 106:396–409.
  • He J, Wei M, Li B, Kang Y, Evans DG, Duan X. 2005. Preparation of layered double hydroxides. Berlin/Heidelberg: Springer-Verlag.
  • Hibino T, Kobayashi M. 2005. Delamination of layered double hydroxides in water. J Mater Chem. 15(6):653.
  • Kazlauskas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA. 1991. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J Org Chem. 56(8):2656–2665.
  • Klibanov AM. 2001. Improving enzymes by using them in organic solvents. Nature. 409(6817):241–246.
  • Kloprogge JT, Wharton D, Hickey L, Frost RL. 2002. Infrared and Raman study of interlayer anions CO32–, NO3–, SO42– and ClO4– in Mg/Al–hydrotalcite. Am Miner. 87(5–6):623–629.
  • Li K, Wang J, He Y, Cui G, Abdulrazaq MA, Yan Y. 2018. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles. Chem Eng J. 351:258–268.
  • Liu DM, Dong C. 2020. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 92:464–475.
  • Melais N, Aribi-Zouioueche L, Riant O. 2016. The effect of the migrating group structure on enantioselectivity in lipase-catalyzed kinetic resolution of 1-phenylethanol. Comptes Rendus Chim. 19(8):971–977.
  • Mishra G, Dash B, Pandey S. 2018. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci. 153:172–186.
  • Moure VR, Fabrício C, Frensch G, Marques FA, Mitchell DA, Krieger N. 2014. Enhancing the enantioselectivity of the lipase from Burkholderia cepacia LTEB11 towards the resolution of secondary allylic alcohols. Biocatal Agric Biotechnol. 3(2):146–153.
  • Newman SP, Jones W. 1998. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J Chem. 22(2):105–115.
  • Ortiz C, Ferreira ML, Barbosa O, Dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. 2019. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol. 9(10):2380–2420.
  • Rahman MBA, Basri M, Hussein MZ, Rahman R, Zainol DH, Salleh AB. 2004. Immobilization of lipase from Candida rugosa on layered double hydroxides for esterification reaction. Appl Biochem Biotechnol. 118(1–3):313–320.
  • Rahman MBA, Othman SS, Yunus NMM. 2016. Selectivity of Candida rugosa lipase immobilized onto layered double hydroxides as catalyst in synthesis of fatty acid esters. J Teknol. 5–6:111–115.
  • Reichle WT. 1986. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics. 22(1):135–141.
  • Ren L, He J, Zhang S, Evans DG, Duan X. 2002. Immobilization of penicillin G acylase on calcined layered double hydroxides. Chem Res Chin Univ. 18(1–3):3–11.
  • Show PL, Tan CP, Shamsul Anuar M, Ariff A, Yusof YA, Chen SK, Ling TC. 2012. Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermo separating polymer in aqueous two-phase systems. Bioresour Technol. 116:226–233.
  • Silva Dias G, Bandeira PT, Jaerger S, Piovan L, Mitchell DA, Wypych F, Krieger N. 2019. Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al–Cl for kinetic resolution of rac-1-phenylethanol. Enzyme Microb Technol. 130(2019):109365.
  • Silverstein RM, Webster FX, Kiemle DJ. 2005. Spectrometric identification of organic compounds. 7th ed. Hoboken, NJ: Wiley.
  • Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J. 2013. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3(12):2823–2836.
  • Strauss UT, Felfer U, Faber K. 1999. Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedron Asymmetry. 10(1):107–117.
  • Tahsiri Z, Niakousari M, Hosseini SMH, Majdinasab M. 2022. Magnetic layered double hydroxide nanosheet as a biomolecular vessel for enzyme immobilization. Int J Biol Macromol. 209(Pt A):1422–1429.
  • Tasnádi G, Forró E, Fülöp F. 2009. Burkholderia cepacia lipase is an excellent enzyme for the enantioselective hydrolysis of β-heteroaryl-β-amino esters. Tetrahedron Asymmetry. 20(15):1771–1777.
  • Taviot-Guého C, Prévot V, Forano C, Renaudin G, Mousty C, Leroux F. 2018. Tailoring hybrid layered double hydroxides for the development of innovative applications. Adv Funct Mater. 28(27):1703868.
  • Tiss A, Carrière F, Verger R. 2001. Effects of gum arabic on lipase interfacial binding and activity. Anal Biochem. 294(1):36–43.
  • Vaccari A. 2001. Layered double hydroxides: present and future. New York: Nova Science Publishers, Inc.
  • Wang J, Bao W, Umar A, Wang Q, O'Hare D, Wan Y. 2016. Delaminated layered double hydroxide nanosheets as an efficient vector for DNA delivery. J Biomed Nanotechnol. 12(5):922–933.
  • Wang M, Bao W, Wang J, Wang K, Xu J, Chen H, Xia X. 2014. A green approach to the synthesis of novel “Desert rose stone”-like nanobiocatalytic system with excellent enzyme activity and stability. Sci Rep. 4:6606.
  • Xu ZP, Stevenson G, Lu CQ, Lu GQ. 2006. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J Phys Chem B. 110(34):16923–16929.
  • Yu J, Wang Q, O'Hare D, Sun L. 2017. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev. 46(19):5950–5974.
  • Zhao Y, Li F, Zhang R, Evans DG, Duan X. 2002. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem Mater. 14(10):4286–4291.
  • Zheng M, Xiang X, Wang S, Shi J, Deng Q, Huang F, Cong R. 2017. Lipase immobilized in ordered mesoporous silica: a powerful biocatalyst for ultrafast kinetic resolution of racemic secondary alcohols. Process Biochem. 53:102–108.
  • Zhu Y, Rong J, Zhang T, Xu J, Dai Y, Qiu F. 2018. Facile and controlled fabrication of Cu–Al layered double hydroxide nanosheets/laccase hybrid films: a route to efficient biocatalytic removal of Congo Red from aqueous solutions. ACS Appl Nano Mater. 1(1):284–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.